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Abstract

Decision making as a part of nuclear power plant operations is a critical, but common,
task.  Plant management is forced to make decisions that may have safety and economic
consequences.  Formal decision theory offers the potential for a structured approach
capable of taking into account risk-related aspects (plant and worker safety, for instance)
and, at the same time, important factors like economics and regulatory requirements.
Since power generation involves large capital and operational costs, making the decision
process more efficient can lead to significant economical savings. With millions of
dollars at stake, it is imperative that operational decisions be made in a logical and
consistent fashion.  In addition to the monetary concerns, a primary driver for this work is
the desire to make defensible decisions. Within a structured organization like a nuclear
power plant, a variety of interactions take place between groups of decision makers.
These groups are asked to provide guidance on a variety of issues, ranging from complex
regulatory requirements to planning maintenance activities of standby equipment. By
providing an integrated package for decision making, it is believed that tools like the
plant risk assessment can be used in a defensible manner as part of the day-to-day
operation of the facility.

The goal of this report is to describe a decision methodology for nuclear power plant
incidents.  Here, incidents are categorized as plant upsets that are not serious challenges
to plant safety, but nonetheless require an appropriate response.  As part of this decision
methodology, risk assessment, worker safety, economics, preferences, and formal
decision making models make up the foundation. We describe the construction, analysis
heuristics, and inherent uncertainty of these models. From this methodological
framework, we developed a prototypical on-line advisory tool that provides decisional
advice relevant to incident management.  The capabilities of this prototype are discussed
along with a demonstration via case studies.

Thesis Supervisor:  George E. Apostolakis
         Title:  Professor of Nuclear Engineering
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Executive Summary

In this thesis, we have outlined the framework behind formal decision making for nuclear

power plants, leading to the development of an Internet-based incident management

advisory system (simply called “the prototype”).  The goal of this prototype is to

facilitate selection of a preferential decision alternative in response to an incident and

provide technical justification for the decision.  During our research, we encountered a

variety of technical issues, including the determination of decision maker preference

functions, consistency between decision performance measures, automation of a decision

model, and the solution of time-dependent decision processes.

Incident management, the decision making that follows events ranging from non-safety-

related component outages to complex transients, should be based upon decision science

as characterized by the game theory of von Neumann and Morgenstern (von Neumann

and Morgenstern, 1944).  While all plants have well-defined operating procedures which

defend against serious plant challenges, it is of more concern to us to investigate

incidents since they provide a “gray” area of plant operation – an area where latitude is

provided the plant operators to consider alternatives in response to the incident.  By

combining probabilistic models of plant operation with formal decision theory, we have

the potential for a structured approach capable of taking into account risk-related aspects

(plant and worker safety, for instance) and, at the same time, important factors like

economics and regulatory requirements.

An obvious motivation behind the desire to have an incident management system is

money.  Since nuclear power plants have both a large capital cost and significant

operational costs, making the decision process more efficient can lead to potentially large

economical savings.  But, in addition to monetary concerns, an important driver for our

work is the desire to make defensible decisions.  Within a structured organization like a

nuclear power plant, a variety of interactions take place between groups of decision

makers.  For example, the people responsible for the facility risk model frequently are



8

asked to provide guidance on a variety of issues at the plant.  By providing an integrated

methodology for decision making, groups such as the plant risk analysts will be able to

facilitate use of their activities, in this case the probabilistic risk assessment (PRA), in a

defensible manner.  Further, they will be able to define a proper context for PRA

application within the framework of decision making, thereby promoting the use of risk

technologies as part of the day-to-day operation of the facility.

A natural question then, at this point, is “what exactly are incidents at a nuclear power

plant?”  The types of incidents that our prototype is expected to address include

component failures such as pumps, valves, or instrumentation; degradations such as leaks

from coolant systems; and potential system impacts such as non-compliant components.

But, as we discuss in the thesis, the approach to decision making has been generalized in

the prototype such that a wide variety of events can be modeled.  This generalization does

not imply that the prototype will handle every situation with aplomb, but it is hoped that

the methodology does encompass a large number of potential incidents.

ES-1.  The Prototype

In order to bring together the decision modeling and analysis heuristics, we have

developed a decision advisor prototype.  This prototype is used as a test bed for new

ideas and, ultimately, will demonstrate the decision-making technology.  During the

development of the prototype, we focused on four major aspects:

1. A primary controlling module to collect incident information and subsequently

determine the decision model.

2. Preference models representing the decision maker’s beliefs (via a value tree and

associated disutilities).

3. Supporting analysis modules (for example, the PRA, economic models, and

worker safety models).

4. An analysis module to solve the decision process.
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These four aspects make up the structure of the prototype.  From these, we constructed a

“activity tier” diagram (shown in Figure ES-1) which defines the information and

analysis flow framework.  Within this framework, a total of five stages are represented.

Each stage embodies a unique portion of the overall process of determining a preferential

decision option from a list of alternatives.

Figure ES-1.  Framework tiers embodied in the decision advisor prototype.

STAGE I -- Problem InitializationSTAGE I -- Problem Initialization

STAGE II -- Determine Incident Facts and Boundary ConditionsSTAGE II -- Determine Incident Facts and Boundary Conditions

STAGE III -- Map Incident Information into
Prototype

STAGE III -- Map Incident Information into
Prototype

STAGE IV -- Construct Decision Model
Specific to Incident

STAGE IV -- Construct Decision Model
Specific to Incident

STAGE V -- Analyze Model
and Provide Applicable Results

STAGE V -- Analyze Model
and Provide Applicable Results
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Let us briefly describe the stages.  First, Stage I of the prototype represents the

initialization of the decision process.  The current version (version 1) of the prototype

uses a web-centric approach where the prototype runs off a web server.  During this

stage, the user is presented with the value tree, performance measure weights, and

associated disutilities.  We will discuss the technical basis for these items later in this

section.  An example of the graphical user interface for the prototype is shown in Figure

ES-2.  Note that the prototype is multi-lingual, where the language can be changed by

selecting from a list of available options.

Figure ES-2.  Example of the user interface for the decision advisor prototype.
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In Stage II of the prototype application, the user must provide incident-specific facts and

related boundary conditions.  For example, the types of data that must be supplied by the

user at this stage include:

- The type of incident (component or initiator related)

- The current reactor state

- The time until the next scheduled outage

- Impacts to plant operations through component degradations

Within this stage, the user will provide a variety of information specific to the incident.

Some of this information may cause the prototype to ask the user for additional

information (for example, if a component degradation impacts initiating events, the user

will be queried for this information) in later stages.

In Stage III, the details of the incident are entered into the analysis data stream.  The

knowledge base contains a variety of potential decision alternatives, options like

continuing as-is, shutting the plant down to fix the problem, repairing the problem at

power, etc.  Incident conditions that are tied to a decision (through the knowledge base)

will cause that decision to automatically be used in the analysis.

Once the relevant decision information is entered into the prototype, the user enters Stage

IV.  Here, the prototype will automatically construct the decision model that will be

analyzed to determine the preferential decision option.  Prior to the actual analysis, the

prototype displays the information that has been collected from the user in order to offer

a final check of the decision model inputs.  But, once the user is satisfied with the

analysis conditions, the decision model is constructed by the prototype.  The process that

takes place is to evaluate a generic influence diagram/decision tree via a static, sequence-

based “roll-back” calculation (Clemen, 1996).  We have also implemented a novel

simulation-based analysis module that envelops the entire decision process with a

discrete event simulation framework.  Both the “roll-back” and simulation modules have

been embedded in the prototype without the reliance on third-party analysis tools.
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Once the point estimate results are shown on the screen, the user has entered Stage V of

the decision advisor prototype.  Stage V is the final step in the analysis process, whereby

the user is allowed to view the results.   The user is shown the decision alternatives

ranked by preference along with a numerical score calculated by using an additive form

of multi-attribute utility theory:

rsstakeholdesafetyaccidentsdoseeconomics

rsstakeholdesafety

accidentsdoseeconomics

PIPIPIPIPI

rsstakeholdeuwsafetyuw

accuwdoseuweconomicsuwPI

++++=

++
++=

)()(

.)()()(

     (ES-1)

where wi is the weight of the i’th performance measure and u( ) is the disutility associated

with a particular outcome of the i’th performance measure.  While non-linear forms of PI

are available, they are generally not utilized.  As noted by Clemen (1996) “…in

extremely complicated situations with many attributes, the additive model may be a

useful rough-cut approximation.”

Note that the PI shown in Equation ES-1 is only a point estimate.  This value is only used

to give the user a “feel” for the decision alternative outcomes.  For decision making, one

must rely on the expected value of the PI.  Consequently, the prototype performs Monte

Carlo sampling on the input variables to PI as part of the expectation calculation.  But,

once the PIs are known for the decisions, we rely on the decision rule to select a

preferential decision.  In our case, we use disutility functions, which implies that we

desire to minimize negative outcomes.  Thus, decisions with low PI are preferred, or:

)][min()1( iPIEDecision ====      (ES-2)

where Decision(1) is a the preferred decision alternative and E[PI]i is expected value of

the PI for the i’th decision alternative.
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When running the Monte Carlo uncertainty analysis, we are estimating the expected

value of PI for each decision alternative, or:

iii
i

iii dyxuwPIE xyx� �
∞

=
�
�

�

�

�
�

�

�
=

0

5

1

)|()|(][ π  (ES-3)

where i indicates the performance measure; wi is the weight of the measure; ui is the

disutility for the measure; π( ) is the epistemic uncertainty over the decision analysis

parameters and models; x is the decision analysis parameters and models (which, in

general, is a vector of factors for each decision alternative and performance measure);

and y is the boundary conditions of the problem (i.e., the evidence or the facts).

We exercised the prototype via application of two case studies, first a leaking steam

generator tube and second an inoperable pressure transducer.  For both case studies, we

calculated the point estimate results, performed sensitivity calculations, and ran

uncertainty calculations.

ES-2.  The Decision Model

The primary focus of the decision model was to utilize a structure drawn from influence

diagrams.   Within this model, we identified six major parts that are germane to incident

management:

- Decision alternatives – these include the options specific to the incident.

- Incident specific elements – these include the possibility for repair, the type of

failure mechanisms present, and other unique features related to the incident.

- Boundary conditions – these include the plant state and time until the next outage.

- Plant upsets – these include initiators such as transients/leaks that lead to

complications.

- Plant response – these include the plant system response to any upset conditions.

- Outcomes – these include the outcomes of interest to the decision maker.
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The decision model embodied in the prototype is a generalized influence diagram.  Other

analysis modules support the main decision model, and include economic impacts, risk

analysis, and worker safety.  Interacting with these modules is a knowledge base that

supports the generation of an incident-specific decision model.  But, once the decision

model is constructed, the prototype still needs to analyze the model.  Consequently, we

developed an appropriate analysis methodology to accompany the decision model.

ES-3. The Value Tree

We collected preference information from our decision makers during two workshops.  In

the initial workshop, we developed the structure of the “value tree” for incident

management (shown in Figure ES-3).   When constructing the value tree, deliberation

played a critical role both in shaping the structure of the tree and in determination of the

performance measure weights.  For example, we had one case where the decision makers

were divided into a group of three and an individual, where the value tree weights were

significantly different between the two groups.  Rather than taking a average of the

decision makers, deliberation resulted in the group of three modifying their weights to be

similar to the individual’s weights.  As part of this deliberation, we ran “sanity” checks

on the results so that the decision makers could see the impact from the discussions.

In the workshops, we utilized a technique known as the Analytical Hierarchy Process

(AHP) wherein the decision makers are ask to perform pair-wise comparisons between

potential outcomes (Saaty, 1980).  First, we used AHP to determine the value tree

performance measure weights, specifically in the context of incident management.  When

we use AHP to determine these weights, we are comparing one entity (the worth of cost)

against another entity (the worth of worker safety).  Also, these performance measures

are within an order of magnitude from one another (one is not 100 times more important

than the other in the context of incident management).  Further, they do not have arbitrary

outcomes (for example, for radiological dose, the focus is “dose” as an impact, not on any

one particular value for dose).   These conditions on the weights are consistent with those

suggested by the developer of AHP (Saaty, 1980; Saaty, 1997).
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Figure ES-3.  The value tree derived from our decision makers for incident management.

Following the value tree weight determination, we used AHP to develop the performance

measure disutility functions.  Through this process, we were able to illustrate limitations

in the AHP-derived disutility functions by utilizing multi-dimensional consistency checks

using fixed indifference levels.  A surprising result from our analysis was the lack of

fidelity when using AHP for disutility determination.  AHP is a technique that has seen

increasing application in the field of decision analysis.  But, we found several technical

issues that limited its usefulness.

1. AHP yields disutilities that imply the decision makers are very risk prone.
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2. AHP preserves the certainty equivalent only for the low scale regions (e.g., zero

to one million euro).  In higher regions, the certainty equivalent is suspect.  For

example, the AHP results suggest that the decision maker would only be willing

to pay 20,000 euro to avoid a “50-50” lottery (say a flip of a coin) where the two

outcomes are either lose nothing or lose 1 billion euro.  In reality, the decision

makers would be willing to pay much more than 20,000 euro to avoid large losses

of this type.

3. AHP disutility curves are extremely sensitive to small changes in the initial scale

regions.  In other words, it is possible to obtain dramatically different disutility

functions depending on the nuances of setting up the AHP scales.

4. The sanity checks performed on the AHP results showed several inconsistencies.

For example, the AHP application indicated that a lethal dose should be

approximately 0.2 Sv, when in fact it is approximately 7 Sv.

To overcome the issues related to AHP and disutilities, we developed an approach called

“measurable equivalence” in order to construct the required disutility functions.  This

approach allows us to ensure that the maximum outcome (the worst case) for each

performance measure has about the same level of “consequence.”  Further, we utilize

performance measure indifference points in order to constrain the disutility function,

where the constraint is made by actual measurable equalities.  This second feature is used

to bring real data into the decision process while simultaneously helping to reduce the

subjectivity present when utilizing preference information.  In order to transpose

equivalencies from one performance measure to another, we needed to have at least one

disutility function fully specified.  We chose to determine the cost disutility, where we

determined points on this function by way of lottery equivalence questions poised to our

decision makers.  We then proceeded to determine the remaining disutility functions by

applying the measurable equivalence approach.
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Examples of the measurable equivalencies that were utilized are shown in Figure ES-4.

Note that these equivalencies are treated as indifferent points (similar to indifference

curves in decision theory) and are used to obtain individual points on the applicable

disutility function.  An alternative approach to determining disutility functions would

have been to convert everything into monetary values (e.g., euros) by determining a

linear conversion factor for each disutility curve.   But, we deemed this approach too

limited and instead utilized our measurable equivalence approach where individual

disutility points are determined and the disutility curve constructed from these points.

Note that this approach allows the flexibility to bring in different sources of information,

including elicitation and deliberation on the part of the decision maker.

After determining each of the disutility functions, we proceeded to test them to see if they

seemed reasonable.  Consistency checks were performed using the equivalence-based

disutilities – the results of which showed very good agreement with expected results.

To perform the sanity checks between the performance measures, we need to compare

two measures against each other at a specified PI value.  For example, if we postulate a

value of 0.0001 for PIeconomics then, in theory, the decision maker should be indifferent to

a value of 0.0001 for any of the other measures (since they are additive).  In terms of

equation ES-1, we are equating individual PI measures:

0001.0)()( ======== doseuweconomicsuw doseeconomics      (ES-4)

Since we know the weight of economics (0.32) and dose (0.16), we can then determine a

cost and dose from the disutility curves that will result in a PI of 0.0001.  In this case, we

find that the cost is approximately 1.6 million euro and the dose is approximately 6 Sv.
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Figure ES-4.  Measurable equivalence factors used to develop the final disutility

functions.  The arrows indicate the “direction” of influence from one measure to another

(e.g., receiving a dose of 7 Sv induces a fatality).

We plot the PI comparisons for each of the performance measures in Figure ES-5.

Evaluating this sanity check figure, we see that the consistency between performance

measures is quite good.  For example, we see that a fatality is equal to approximately 2

million euro, which is also equal to a dose of about 7 Sv.  Also, a list of equality

comparisons is provided in Table ES-1, which contrasts the disutility results obtained by

way of AHP and that by measurable equivalence.  In every case, the measurable

equivalence results are superior to those obtained via AHP.
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Figure ES-5.  Consistency checks plotted as a function of cost, for the measurable

equivalence-based performance measures.

Table ES-1.  A comparison of consistency checks for AHP-derived and measurable

equivalence-derived disutilities.

Consistency Check Original AHP Results Measurable Equivalence Results

Fatality cost 10 million euro 2 million euro

Lethal radiological dose 0.2 Sv 7 Sv

Severe injury cost 3 million euro 200,000 euro

Core damage cost 15 million euro 460 million euro

Regulator inspection cost 3 million euro 2.6 million euro
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ES-4.  Analysis Modules

In order to assist a user confronted with complex nuclear power plant decisions, we

designed the prototype to rely on an underlying domain-specific knowledge base.

Included in this knowledge base are modules such as:

- Decision maker preferences via the value tree (and corresponding weights) and

the measurable equivalence disutilities.

- PRA impacts through initiator upsets and safety system responses.

- Economic, worker safety, and radiological dose deterministic modeling.

- Decision alternatives related to incident management.

- Plant operational state determination.

- Sensitivity and uncertainty treatment.

The major analysis modules are depicted in Figure ES-6, where we also indicate the

primary impacts on the value tree that are modeled in the prototype.  For example, we

utilize a “worker actions” module that depicts the likelihood of a worker experiencing an

injury or fatality.  If a worker were injured, this outcome would impact the industrial

accidents performance measure.

ES-5.  Simulating Decision Processes

To assist in the calculation of dynamic events (like what one might find during plant

operation in response to an incident), we investigated the possibility of enveloping the

entire decision process in a simulation representation.  Since decision processes involve

stochastic outcomes, we evaluated both traditional static and dynamic models.  For

treatment of the dynamic models, we utilized a modified version of the Metropolis

simulation algorithm (Metropolis et al, 1953), but we extended the routine to encompass
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Figure ES-6.  The prototype analysis modules and their impacts on the value tree.
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decision processes for nuclear power plants. Within our decision framework, we are

concerned with plant upsets – via initiating events – and the reliability of safety systems.

We found that in some cases, static models will adequately represent the decision model.

But, in other cases, static decision trees and fault trees provide only a rough

approximation to the exact answer.  Note though that static models may be solved very

quickly, while simulation-based approaches take much longer.  Consequently, we

structured the decision advisor prototype such that a two-level analysis approach is

possible.  A static model can be used to provide decision advice immediately while the

prototype continues to process the simulation model.

Within this analysis framework, we described both the deterministic and aleatory models

required to assist in the calculation of preferential decision options.  In general, the

calculation of preference between decision alternatives focuses on the expected PI.  Since

we are dealing with disutilities for the prototype, we seek to have decision options with

low E[PI].  Within the deterministic framework, we determined models specific to plant

operation and economic impacts.  For plant operations, initiating events were used in two

ways, first to determine the probability of getting to a decision-specific state (say a

transient) and then second to determine the outcome of that state.  For the economics

modeling, we utilized the work done by Burke, Aldrich, and Rasmussen on nuclear

power plant costs (1984).

The aleatory modeling focused mainly on plant operations and the safety assessment.

Within the context of plant operations, we have modeled plant upset conditions as leading

to impacts in the PI performance measures such as core damage, cost, and external

attention.  Further, we determined models for industrial accidents and radiological dose,

both of which affect workers.

The goal of the decision-process simulation is to determine potential outcomes, measure

their individual impacts, weight the impacts by their respective likelihood, and then

calculate an overall E[PI] for each decision alternative.  Then, the decision alternative
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with the lowest E[PI] is considered to be the preferred option.  In order to implement the

event simulation, we provide the mathematics needed for both a “thinning event”

simulation and a “lifetime event” simulation.  Thinning event simulation questions the

state transition probability at each incremental time step while lifetime event simulation

questions the time duration expected in a particular state.  In general, the lifetime event

simulation approach is much more computationally efficient, especially for the case of

reliable components and systems.  Consequently, this is the method we implemented for

the simulation module.  As part of the simulation discussion, we described, step-by-step,

the details of the calculation involved in simulating a decision.

ES-6.  Conclusions

We have provided a detailed methodology for formal decision making relevant to an

incident management advisory system in nuclear power plants.  This framework includes

the treatment of a variety of deterministic and stochastic models, including decision

maker preferences; the plant PRA; economic costs; worker industrial and radiological

safety; external attention; and plant state changes.  Primary contributions include the

encapsulation of the decision methodology in an Internet-based prototype, the discovery

of limitations in the AHP for disutility application, the “measurable equivalence” method

of disutility determination, and the solution of decision processes via a custom simulation

routine.

As the research proceeded, a variety of secondary accomplishments were also realized.

Our treatment of epistemic uncertainty was comprehensive and included portions of the

decision model such as preference functions and the value tree weights.  The discussion

of the potential modifications and limitations when using a PRA for decision making

points out areas of concern.  Since we do use a variety of PRA information as part of the

prototype, we developed a XML schema specific to this information in order to facilitate

the transfer and manipulation of data structures found in a typical nuclear power plant

PRA.  We offer this format to the analysis community with the hope that it will

encourage the exchange of reliability and safety information.
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In closing, this thesis provides the script for decision making, a play that casts process

models; applicable, informed decision makers; and formal decision-making technologies

together with the goal of assisting, not replacing, human judgment.  While decisions take

place on the stage of uncertainty, it is important to remember that decision science

provides a solid foundation for the framework, and associated prototype, described within

this document.
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Risk Informed Incident Management at Nuclear Power Plants

"Indifference is the essence of inhumanity." – George Bernard Shaw

1 Introduction

The management of personnel, operator actions, and decision making during nuclear

power plant operations is a critical task and raises specific issues that deserve attention.

Decisions are to be made by the plant management that may have both safety related and

economic consequences.  Attributes like worker exposure, radiation release, bad

publicity, and regulatory intervention may conflict with concerns like loss of income due

to plant shutdown or reduced power, repair, and maintenance costs.

It has been suggested that probabilistic risk assessment (PRA) insights can contribute to

making better decisions in the nuclear industry (Apostolakis, 2000).  Furthermore,

research has shown that decision makers can frame judgement in a formal decision

analysis framework.  The combination of PRA and decision theory offers the potential for

a structured approach capable of taking into account risk-related aspects (plant and

worker safety, for instance) and, at the same time, important factors like economics and

regulatory requirements.  Incident management, the decision making the follows events

ranging from non-safety-related component outages to complex transients, should then

utilize this combination of PRA and decision science.  While many plants have well-

defined standard operating procedures which help to defend against serious plant

challenges, it is of more concern to us to investigate incidents since they provide a “gray”

area of plant operation – an area where latitude is provided the plant operators to consider

alternatives in response to the incident.

Since nuclear power plants have both a large capital cost and significant operational

costs, making the decision process more efficient can lead to potentially large economical

savings.  Examples of the magnitude of costs under consideration include the operations

and maintenance budget of the Forsmark site in Sweden around $100 million per year

(Kovan, 2002) and the total nuclear power production cost for the U.S. industry of $13

billion per year (Nuclear News, 2001).  With millions of dollars at stake, it is imperative

that operational decisions be made in a logical and consistent fashion.  Consequently,
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early in the research for this thesis, it was a desire to translate the science of decision

making into a prototype advisory system, whereby this system can be utilized in an

operational setting.  The details of this prototype will be discussed later in Section 5.  The

types of incidents that this prototype is expected by address include component failures

such as pumps, valves, or instrumentation; degradations such as leaks from coolant

systems; potential system impacts such as non-compliant components; and tradeoff

questions such as inspecting degraded equipment in one plant state versus another.

In addition to the monetary concerns, a driver for the work embodied in this thesis is the

desire to make defensible decisions.  Within a structured organization like a nuclear

power plant, a variety of interactions take place between groups of decision makers.  For

example, the people responsible for the facility risk model frequently are asked to provide

guidance on a variety of issues at the plant, ranging from complex regulatory issues to

planning maintenance activities of standby equipment.  But, providing risk input to

decisions while operating in isolation may lead to inappropriate guidance since

interactions between other aspects important to the decision may be missed.  By

providing an integrated package for decision making, groups such as the plant risk

analysts will be able to facilitate use of their activities, in this case the PRA, in a

defensible manner.  Further, they will be able to define a proper context for PRA

application within the framework of decision making, thereby promoting the use of risk

technologies as part of the day-to-day operation of the facility.

The goal of this thesis is to describe a decision methodology for nuclear power plant

operations and planning, focusing on the management of incidents.  As part of this

methodology, PRA and formal decision making techniques make up the foundation.  This

foundation will be capable of taking into account decision maker preferences.  In

addition, we will utilize the methodological framework to construct a prototypical on-line

advisory tool for decisional advice relevant to nuclear power plant incident management.

The capabilities and limitation of this prototype will be discussed along with a

demonstration via case studies.  Note that the scope of the analysis described in this thesis

is specific to incidents, which by definition, occur prior to a core melt event.  Situations

where decisions are made after a core melt event fall into the category of accident

management (Catton and Kastenberg, 1998; Jae and Apostolakis, 1992).  This distinction

of incident-versus-accident management is shown in Figure 1, where minor incidents

progress to major accidents from upper-left to lower-right.  Since we focus on incident

management, we will not address items such as core melt mitigation or emergency
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response.  We will instead evaluate a wide variety of impacts related to plant upsets,

ranging from items such as the hourly costs to repair inoperable components; the

likelihood of a worker injury or fatality; the occurrence of plant operational state

transitions; and the rise of external attention following unwanted events.

Figure 1.  An illustration of the degree of severity between incident and accident

management at nuclear power plants.
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The remainder of this thesis documents the formal decision making structure we have

developed for incident management.  Section 2 will provide background information

related to both formal decision making and PRA.  Then, in Section 3, we will discuss the

general methodology development, including utility theory.  Section 4 will cover solving

the underlying decision model, the supporting analysis modules, and treatment of

uncertainty.  Section 5 will provide a look at the methodology by way of application to

two representative case studies.  Finally, we will summarize the primary

accomplishments and conclusions in Section 6.  Extensive supporting text, including

source code to the decision advisor prototype, is provided in the Appendices.
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“The difficulty in life is the choice.” – George Moore

2 Background

2.1 A (Brief) History of Formal Decision Making

Decision making has been part of human activities for numerous years.  Lacking

predictive information about a future event, decision making historically focused on

guessing potential outcomes of one or more realized choices.  As decision making

evolved, the underlying processes behind the methodology evolved to include

probabilistic phenomena.  Including the effects of these phenomena – a reflection of a

stochastic nature – helped to provide realism in decision making.  Consequently, the roots

of decision making are tied to fundamental shifts of thought that occurred in the

European Renaissance, circa 1600 to 1700, related to the genesis of modern statistical

theory. Unfortunately though, many of the important concepts and insights related to

decision making did not become widely considered until the middle of the 20th century

with publications of von Neumann and Morgenstern's book on game theory (von

Neumann and Morgenstern, 1944).

Since the mid 1900s, the implementation of decision making has seen a increasingly

strong focus, a focus on integrating decision making theory into mainstream fields such

as law, business, and medicine.  An important part of the theory behind the

implementation is that of probability theory.  Like statistics, probability theory has a

somewhat recent arrival on the mathematics scene.  The early work in this field dates

back to the sixteenth through eighteenth centuries and includes Cardano (Cardano, 1663),

Bernoulli, and Pascal (Todhunter, 1865).  It is worthwhile to note that the Bayesian

interpretation of probability theory underlies modern probabilistic safety assessment

(PSA).

Building upon the game theory work of von Neumann and Morgenstern, Raiffa and

Schlaifer introduced decision analysis concepts such as decision trees (Raiffa, 1968) and
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how Bayesian mathematics interdict in the application of formal decision theory (Raiffa

and Schlaifer, 1961).  Couple the fact that computers were becoming available in the

1960s with the emergence of modern decision making theory leads one to appreciate

relative rapid rise in popularity of new tools like decision trees.  And, as part of these

tools, concepts like utility theory were promoted to a new and wide audience of potential

decision-makers.  In the middle of the 20th century, mathematicians and psychologists

explored the utility portion of decision making theory (Edwards, 1954).  While the

concept of “utilities” is quite old (Laplace, 1825), these theories did not become

incorporated into mainstream applications until later where techniques such as the

Analytic Hierarchy Process (AHP) and multiattribute utility theory arrived on the scene

(Saaty, 1980; Winkler, 1972).

Permeating though all of decision making theory, Bayes theory provides a basis for

formulating the decision problem tied to probabilities.  Specifically, Bayes provided a

technique to process evidence based upon conditional probabilities (Bayes, 1763).

Deceptively simple, Bayes’ equation states:  (Ang and Tang, 1975)

)()|()(),( xpxppxp θθθ = (1)

where p(θ, x) is the posterior probability distribution; p(θ) is the prior probability

distribution (i.e., what is known about the outcome prior to gathering evidence); p(x | θ)

is the likelihood of observing a particular outcome or set of evidence (given θ); and p(x)

is the unconditional probability of the evidence x (given any θ).  We utilize the posterior

probability distribution throughout our methodology discussion, specifically on any

chance events related to decision making.  The uncertainty on these chance events –

characterized as epistemic – will be discussed in a later section.

The stage for formal decision making has been set by the culmination of statistics,

probability, and game theories, but one still has to make decisions based upon imperfect

models and a limited state of knowledge.  And, these decisions take place on the stage of

uncertainty, a place where the dialog, and actors, are to some degree unknown in the next
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act.  It is this fact of making decisions against the backdrop of uncertainty that interjects a

pause for reflection, even in presumably straightforward applications of decision

making.†  Four hundred years of science has guided the creation of a formal decision

science, a science that helps to guide applications like multiattribute utility theory.

Nonetheless, it is important to understand that the science is the foundation, not the entire

structure, of formal decision making. The best decision making regimens are ones that

mix well defined processes; applicable, informed decision makers; and formal decision-

making technologies that assist, but does not replace, human judgment.

2.2 Informal Decision Making at Nuclear Power Plants

A variety of decisions are made every day at every nuclear power plant.  Most of these

decisions are routine, but, on occasion, significant decisions must be made.  Currently,

little formal decision making is used in practice, with few exceptions (Weil and

Apostolakis, 2001).  Nonetheless, informal decision making is used, both by the plant

operators and the regulators.  It is the intent of this section to provide examples of this

application of informal (or ad hoc) decision making practices at nuclear power plants in

order to provide a contrast for the formal decision making advocated in this thesis.

                                               
† Consider the proposition:  A game is played by flipping a fair coin until it comes up tails.  The total

number of flips, n, determines the prize, which equals $2n.  For example, if the coin comes up tails on the

first toss (which has a probability of 1/2), the prize is $2, and the game ends.  The expected value of the

one-toss scenario is:  outcome × probability, or $2 × (1/2) = $1.   Since there are an infinite number of

possible outcomes (n heads followed by one tail), each with an expected value of $1, the expected outcome

of the game is an infinite number of dollars.  Decision theory states that a risk-neutral person would accept

the gamble if the “buy-in” cost is less than the expected return.  Since any finite cost is less than infinity,

traditional decision theory would suggest playing the game regardless of how large the buy-in cost.

If the initial buy-in were $2, then of course one would like to play the lottery since you are guaranteed to at

least get the buy-in back.  But, if the buy-in is a large amount, say $1,000, one would probably not take the

gamble, even though a run of 20 heads and, finally, a tails would return over one million dollars.  In other

words, one may desire to avoid large losses at the expense of potentially large returns.  This concept of

“risk” helped to lead to the concept of “utility.”  The proposition above is called the ”St. Petersburg

Paradox” and is discussed further by Bernstein (1996).
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The U.S. Nuclear Regulatory Commission (NRC) regulates nuclear power plant

operation through a combination of several regulatory processes.  One of these processes,

safety oversight, includes activities such as inspection, assessment of performance,

evaluation of experience, and other general support activities.  As part of these regulatory

activities, a variety of risk metrics is utilized.  Included in these NRC activities are:

- Significance Determination Process (SDP)

- Generic Issue Resolution

- Risk-Informing Special Treatment Requirements

Let us briefly discuss each in turn.

The SDP is one of the methods that the NRC uses to assist in risk-worth determination of

inspection incidents.  In general, it is less formal (quantitatively) that other processes.

For example, the “Phase 2” SDP uses simplified checklists to estimate an “annualized

core damage frequency (CDF).”  Decision making then takes place via knowledge of the

annualized CDF.  Specifically, decision criteria is provide via regions (and associated

colors) of interest:

Red Increase is > 10-4/yr
Yellow Increase is between 10-5/yr and 10-4/yr
White Increase is between 10-6/yr and 10-5/yr
Green Increase is < 10-6/yr

Closely tied to the SDP is the NRC’s revised oversight process.  This process utilizes

metrics such as those discussed above, but then determines a “matrix” of outcomes for

measures such as initiating events and mitigating systems.  An example of this matrix,

called the “action matrix” since the level of regulatory response is keyed to outcomes in

the boxes, is shown in Figure 2.  But, use of the action matrix raises decision making

questions such as consistency between category outcomes.  For example, if a plant has

two “white” outcomes in a quarter, is this comparable to a “yellow” outcome in another
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category?  Or, is continued impacts (say “white”) in one category any better or worse

than similar impacts in another category?   As we will see later in the discussion of

consistency (or sanity) checks for our prototype advisory system, the ability to equate

measures and demonstrate consistency is vital.

Figure 2.  An illustration of the output from the NRC’s revised oversight process for

nuclear power plants.

The process of Generic Issue Resolution is more formal, quantitatively, than that of  SDP.

Consideration is taken in calculating both a CDF (specific to various decision

alternatives) and the regulatory cost burden associated with decision alternatives.  Then,
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to assess the cost effectiveness of a particular plant alternative, a dollar-to-person-rem

averted ratio is generated.  Historically, a value of $1,000 per person-rem has been used

by the NRC as an upper bound in deciding whether corrective measures may be

appropriate.  Recently this criteria was changed to $2,000 per person-rem.  Additional

cost/benefit analysis information is available in NUREG/CR-3568, A Handbook for

Value-Impact Assessment, and NUREG/CR-4627, Revision 2, Generic Cost Estimates.

The Risk-Informing Special Treatment Requirements process is a part of risk-informing

10 CFR part 50 of the U.S. Code of Federal Regulations.  Within this process, one

proposed option is to make the special treatment requirements (e.g., quality assurance,

environmental qualifications, reporting) risk-informed.  This proposed modifications

would utilize a new definition in 10 CFR 50.2 that depicts which components are

"safety-significant."  Components that are safety-significant would be within the scope of

the requirements.  Conversely, components that are deemed to not be safety-significant

would be outside the scope unless specifically added by the plant operators or the NRC.

In order to determine the significance of components, the PRA would be used to help

determined applicable components using traditional PRA importance measures (Lambert,

1975; Cheok, Parry, and Sherry, 1998).  It is desired that the importance measures should

"be chosen such that results can provide...information on the relative

contribution of an SSC (system, structure, or component) to total

risk.  Examples of importance measures that can accomplish this are

the Fussell-Vesely (F-V) importance and the Risk Reduction Worth

(RRW) importance.  Importance measures should also be used to

provide…information on the safety margin available should an SSC

fail to function. The Risk Achievement Worth (RAW) importance

and the Birnbaum importance are example measures that are suitable

for this purpose." (U.S. NRC, 2000)
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Proposed decision criteria are based upon these two importance measures, F-V and

RAW.  If a component exhibits a measure value larger than the target for either F-V or

RAW, then the component is deemed to be safety-significant.  The target importance

measure values are:

F-V > 0.005 [for either CDF or large early release frequency (LERF)]

RAW > 2 (for either CDF or LERF)

A central tenant to these risk-informed processes is that the risk model plays a key role to

the informal decision making (Brewer and Canady, 1999).  Generally, this decision

making takes place by use of a risk threshold, for example the values specified on F-V

and RAW above.  Alternatively, a common risk metric that is used is the change in CDF,

or ∆CDF.  These metrics then play a part in the larger context of risk-informed

applications at current plants.  A graphical depiction of the process for risk-informed

decision making at nuclear power plants is shown in Figure 3.

Current ad-hoc methods of decision making typically suffer from several flaws.

Common problems in these activities include:  (1) focusing on a single metric (e.g.,

importance measures for core damage) as a primary decision-driver, (2) lacking

consideration of other decision alternatives outside the initial focus, (3) ignoring decision

maker preferences for key attributes, and (4) not using methods such as “sanity checks”

to question the validity of decision results.  For example, much of the focus of many

regulatory programs is on the use of importance measures, where the caveat on their use

is typically that the numbers are used to “risk-inform.”  So, rather than base the decision

on an importance measure number, the number is applied in an ad-hoc fashion via a

subjective process.  Note that even formal decision making is subjective, but a formal

process forces one to indicate what attribute(s) is important, why is it important, and how

much emphasis is paid to the attribute(s) as it relates to decision making.
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Figure 3.  An illustration of the process followed for “risk-informed,” informal decision

making at many U.S. nuclear power plants.

We will discuss the aspects of formal decision making in more detail in Section 3.  But,

at this point, we note a couple of identifying features of formal decision making that are

absent in many of the informal applications discussed earlier in this section.  First, formal

decision making integrates a multi-attribute approach (via utility theory) while informal

applications typically focus on a single metric type (e.g., in the case of importance

measures, the CDF).  Second, formal decision making utilizes decision maker preference

as an integral part of the analysis.  Informal decision making applications generally do
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not address this issue,† and if they do, are somewhat subjective.  Third, formal decision

making relies on quantitative expectation as the basis for preferential ranking of decision

alternatives.  Many informal decision making applications focus on “thresholds” (e.g., the

colored regions for SDP, $2,000 per person-rem, F-V < 0.005) which then brings up the

question as to the proper decision metric.  For example, if the application has a goal that

the risk is below a value of X, then expected value as a measure may not be desirable

since it is a measure of central tendency.  Instead, the decision maker may be interested in

ensuring that the probability of exceeding the risk threshold is low (Smith, Knudsen, and

Calley, 1999).  In this case, one is focusing on the concept of risk as an upper-bound in

relationship to the cut-off criteria.

2.3 An Introduction to Logic-model Based Risk Assessments

Nuclear power plant PRA, like the formal decision analysis models described later in this

thesis, is a subjective model.  Analysts determine lists of upset conditions (initiating

events), the plant response to said upsets (accident sequences), and the performance of

specific plant systems (fault trees).  Further, as the PRA is decomposed into additional

layers of detail, one reaches the lowest level of the PRA, representing individual

component behavior (basic events).  These individual component modules generally

contain either (1) subjective information about a component's likelihood of not

performing its intended function, (2) actual failure data, or a combination of (1) and (2).

The realm of subjective modeling using probabilistic information falls under the umbrella

of Bayesian methods.

At a high level, our Bayesian model is a mixture of deterministic and stochastic (better

described by the term "aleatory") modules.  For example, both a fault tree and its

underlying system success criteria are deterministic.  But, because we do not know when

a particular component in the system will be inoperable, failures of the component are

                                               
†  For example, in the example informal decision making applications that were discussed, questions such

as “why is a RAW of 2 significant?” and “how applicable is $2,000 per person-rem?” are natural and

should be addressed with respect to the decision maker’s preference.
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represented via an aleatory model.  Of course, both these deterministic and aleatory

models have parameters associated with them, and each parameter may be uncertain.

This second type of uncertainty is classified as epistemic, indicating that our state of

knowledge about a portion of the model is incomplete.

To better understand the modeling techniques that make up current PRAs, the major parts

of the PRA will be described.  In general, a full-scope PRA involves three "levels." The

first level contains the logic models (e.g., fault trees and event trees) and probability data

representing the outcome of damage to the reactor core.  The second level concerns the

plant response to the core damage progression (primarily the containment and associated

systems).  The third level focuses on the off-site consequences resulting from the

damaged core and containment.  These levels are called Level 1, Level 2, and Level 3,

respectively (U.S. NRC 1988).  Figure 4 illustrates these three levels and the information

that is extracted from each level.  Since we are dealing with incident management, we

will focus our attentions to only the Level 1 analysis.

Level 1 PRA identifies and quantifies sequences leading to core damage.  This process

involves identifying significant initiating events, generally those that challenge normal

plant operation and that must be successfully dealt with to prevent core damage.  Once

these initiators are identified, possible plant responses must be determined.  The response

depends on the different combinations of successes and failures of the systems involved.

When the systems have been determined, they must be modeled (usually with fault trees)

to identify credible failure modes and unavailabilities.  Finally, a Level 1 PRA quantifies

the plant's CDF and its associated uncertainty, including at power and reduced power

operation.  To determine the Level 1 results, initiating event frequencies and equipment

failure/unavailability probabilities must be ascertained.  This analysis level is the most

critical for our decision analysis prototype since the quantitative results are driven by

initiators and system unavailability.
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Figure 4.  The three PRA analysis “levels.”

A Level 2 PRA evaluates and quantifies subsequent material releases from core damage.

This analysis involves filtering the Level 1 sequences to a practical number for detailed

analysis, typically by grouping Level 1 cut sets into a smaller set of plant damage states.

Assessment of containment performance with Level 1 accident sequence analyses is

handled much the same as Level 1 analysis by using fault tree models to estimate failure

probabilities.  A common metric out of the Level 2 models is the LERF.

Level 3 addresses not only Level 1 and 2 issues but evaluates and quantifies resulting

consequences to the public and environment as well.  Thus, questions such as weather
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conditions, population levels surrounding the plant site, and dispersion (from

containment) characteristics are important in this analysis.  Common metrics out of the

Level 3 analysis includes early and latent fatalities.

PRA computer tools provide a framework to model traditional Level 1 tasks.  For

example, event trees can be built to determine accident sequences using initiating events

and systems.  The individual systems - as named on the event trees - can be modeled

using logic fault tree editors.  Initiating events and other failure events that comprise each

system can be assigned frequencies or probabilities.  Minimal cut sets (i.e., a minimally

sufficient group of failures that can lead to an undesired outcome) can be generated to

quantify fault trees and sequences.  The PRA analyst has tools available to perform a

variety of different uncertainty analyses, sensitivity analyses, and to calculate importance

measures.  The capabilities of these PRA tools encompass the following items:

- Initiating events

- Accident sequences (also called sequences or event tree sequences)

- Event trees (also called event tree graphic or event tree logic)

- End states (also called end state partition)

- Systems analysis (also called fault tree analysis)

- Cut set generation (also called cut set solving)

- Uncertainty analysis (also called uncertainty propagation or sampling)

- Importance measures.

These identified PRA areas are considered vital for most traditional PRA analyses.

While not discussed here, we do provide additional insights into the structure and

utilization of PRA in Appendix A.

As part of the research in defining the decision making prototype, a PRA data transport

specification has been developed.  This specification utilizes advances in XML

(eXtensible Markup Language), a open specification designed to ease data transport over

the Internet and between different systems.  While the PRA XML definition will facilitate
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development of our prototype, it is also offered to the PRA community at large in order

to provide a “lingua francas” specific to PRA data structures.   The full definition of the

PRA XML schema is presented in Appendix B.  As an illustration of the data structure

and nomenclature, we present an example of the XML definition specific to a pump PRA

basic event in Table 1.

Table 1.  Example of a PRA basic event data structure via the PRA XML specification.

<component id="Pump 27-A">
<title>
Pump 27-A in the high pressure injection system fails
</title>
<failure_information>

<rate id="operating">
<aleatory>

Poisson
</aleatory>
<mean> 1E-4 </mean>
<revealed_failure>

Yes
</revealed_failure>

</rate>
<rate id="demand">

<aleatory>
Binomial

</aleatory>
<mean> 1E-3 </mean>
<revealed_failure>

Yes
</revealed_failure>

</rate>
</failure_information>

</component>

2.4 Modules in the Decision Advisor Prototype

After we discuss the theory behind decision modeling and associated analysis heuristics

(in Sections 3 and 4), we will develop the specific of our decision advisor prototype.

Recall though, that the overall goal of the prototype is to assist nuclear power plant

support personnel in response to incidents.  Toward that end, we have defined a list of

features that should be captured in the prototype software.  These features include:
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- Elicit the General Context of Incident.

- Construction and Solution of the Primary Decision Model.

- Provide Modeling Information.

- Assist in the Quality Assurance of the Decision Model.

- Provide Results and Sensitivity Metrics.

We have taken these features and used them to construct an information and analysis

flow framework.  This general framework of the prototype is shown in Figure 5, where a

total of five stages are represented.  Each stage of the prototype will be turned into

modules which, taken together, represent the software behind the prototype.  Details on

each stage of the prototype will be provided in Section 5.

Figure 5.  Framework tiers embodied in the decision advisor prototype.

STAGE I -- Problem InitializationSTAGE I -- Problem Initialization

STAGE II -- Determine Incident Facts and Boundary ConditionsSTAGE II -- Determine Incident Facts and Boundary Conditions

STAGE III -- Map Incident Information into
Prototype

STAGE III -- Map Incident Information into
Prototype

STAGE IV -- Construct Decision Model
Specific to Incident

STAGE IV -- Construct Decision Model
Specific to Incident

STAGE V -- Analyze Model
and Provide Applicable Results

STAGE V -- Analyze Model
and Provide Applicable Results
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"Life is not numbers…and vice versa." – Anonymous

3 Modeling Methodology for Incident Decision Making

The general methodology behind our incident management framework utilizes formal

decision theory with supporting calculation modules such as PRA and disutilities.  When

faced with an incident, several decision alternatives may be available to the decision

maker.  It is the goal of the incident advisor prototype to select a preferential decision

alternative from the spectrum of available options and provide technical justification for

the basis of the decision. For the methodology discussion, we separate the focus into two

chapters, modeling of the decision problem (chapter 3) and the subsequent analysis of the

model (chapter 4).  In this section, we discuss the first aspect, constructing the decision

model.

Borrowing from formal decision theory, the general focus for modeling in the incident

management framework is through the use of influence diagrams.  Briefly, an influence

diagram is defined as a directed acyclic graph.  This graph utilizes decision nodes

(representing the decision alternatives), chance nodes (representing probabilistic events),

and outcome nodes (representing the disutilities).  The “directed” part of an influence

diagram indicates that the various nodes affect one another as dictated by the direction of

the arcs (or edges as they are sometimes called).  For example, a decision to continue

operating the plant may directly affect (or influence) the probability of the core damage

chance node.  The “acyclic” part of an influence diagram indicates that loops are not

allowed.  Following a decision, the arcs trace a path from one node to the next, ultimately

ending in the outcome node.  In this path, we are not allowed to revisit a node.   We will

discuss the influence diagram (and its related model the decision tree) later in this

section.  Recognize though that influence diagrams allow the modeler to depict a “big

picture” view of the decision problem where this view ultimately is used to present a

model of the problem.
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Other models that support the influence diagram (for incident management) include

modules such as economics, risk, and worker safety.  Interacting with these modules is a

knowledge base that has been constructed to support both the generation and solution of

the incident-specific influence diagram.  Combining these two aspects, the influence

diagram and supporting modules, with the decision maker preference model provides the

overall modeling methodology that is employed in the incident management prototype.

3.1 An Overview of the Decision Problem

We previously classified “incidents” are somewhat benign situation that occur at nuclear

power plants.  While not serious accidents, they nonetheless demand attention and a

technical justification for resolution of the incident.  Past ad hoc attempts of decision

making did bring some quantitative reasoning to bear, but one of the motivations driving

a more formal analysis is the need to better justify decision making.  Consequently, we

are utilizing the science of formal decision making and mixing that with tools such as the

plant’s PRA, an incident knowledge base, and simulation.

Incident management begins with the realization that an incident has occurred which

requires attention.  Not every upset condition at a nuclear power plant requires formal

decision making.  Also, many decisions are predetermined due to the regulated

environment that governs nuclear power plants.  The decision framework we discuss falls

within these two decision making extremes.  But, the methodology behind the incident

decision making always begins with the upset condition as the starting point of the

analysis.  Then, knowing plant process information related to the incident, the primary

decision model can be developed specific to the incident at hand.  Augmenting the

decision model are modules for decision makers preference and general quantitative

supporting calculations.  With these three key parts in place, we can then analyze the

decision model to determine the preferential decision alternative.

If we focus solely on the decision maker preferences and the supporting calculations, we

see several different analysis techniques are required.  For example, the preferences
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module utilizes a model known as a value tree which represents both (1) the decision

maker’s view on what is important to the decision and (2) how much one attribute is

more important than another.  These modules that feed into the decision model are

illustrated graphically in Figure 6 and will be discuss in detail later in this section.

Figure 6.  Illustration of the key analysis modules supporting the general decision

analysis framework, including key module inputs to the value tree nodes.
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We indicated that the supporting modules provide input into the primary decision model.

This primary decision model is (generally) an influence diagram.  Note though that in

place of an influence diagram we could utilize a decision tree since the two are

equivalent.  That is, if given an influence diagram, one can develop a corresponding

decision tree, and vice versa.  Prior to discussing the major supporting analysis modules,

let us discuss the decision tree model.

In PRA, the two common models for quantification are the fault tree and the event tree.

Both are Boolean-based logic models that are typically used to represent system failures

or accident sequences, respectively.  In formal decision-making approaches, two different

models are frequently utilized, namely (1) the influence diagram and (2) the decision tree

(Clemen, 1996).

Decision trees and influence diagrams are related models that both provide a structure for

depicting decision alternatives and corresponding outcomes.  A decision tree is a

branching, tree-like structure that represents the results of decision options.  Relevant

decision options are, by definition, the first branches on the tree.  Following each

decision branch, we then indicate applicable chance nodes and, at the end of the tree, the

ultimate outcome nodes.  The decision tree shows, explicitly, all parts of a decision

model.  This display of the decision model is an asset for small decision models (where

“small” equates to less than 6 to 10 nodes) but becomes a hindrance for larger models.

Since the decision tree contains all the model detail, many trees can become quite large

and cumbersome.

The decision tree defines each decision option and the “sequence” of events following the

decision.  In a way, the decision tree is similar to a PRA event tree model.  In fact, an

event tree is a decision tree without decisions.  The decision tree sequence consists of the

chance nodes in the tree that defines the probability of seeing a certain outcome.

A decision tree contains three important elements.  First, the tree begins with the decision

bifurcations (decision nodes).  These nodes are the first “split” on the decision tree.
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There is one branch for each decision alternative.  Second, following the decision

alternative are the chance nodes representing conditional sequence probabilities.  These

nodes are the probabilities in the tree.  They are generally binary, but may be multi-way

splits (note though that the probability should sum to one for each split).  Third, the

outcome nodes appear on the terminal end of a sequence.  These nodes complete the

sequence and represent outcomes (e.g., dollars lost, risk, dose, "utility," fatalities).  A

simple example of a decision tree with these nodes is shown in Figure 7.

Figure 7. Example of the structure and symbols used in a decision tree.

Given that we have an influence diagram for the decision problem, we can construct a

decision tree.  Alternatively, one can simply begin the decision modeling via a decision

tree.  But, for non-trivial decision models, it is recommended that the influence diagram

be constructed first since it provides a high-level view of the problem and is easier to

manage.  Then, the decision tree could be generated programmatically from the influence

diagram.  In either case, one would utilize the resulting decision model to determine the

preferential decision alternative.

For both the influence diagram and decision tree models, the outcome node may be

represented by money, or more generally (according to traditional decision theory), a

utility function.  A utility function is established by the decision maker and represents his

or her beliefs and values about a particular attribute of the decision outcome.  For
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example, one may have a utility function for money (the worth of wealth), a different

utility function for core damage (the aversion to risky events), and a third utility function

for external publicity (the impact of public perception).  Once this outcome is defined, the

strategy that increases positive outcomes or reduced negative outcomes will be the

preferred strategy.  Since incident management at nuclear power plants affects multiple,

unique attributes that are important to the decision maker, the methodology behind the

incident advisor prototype relies on multi-attribute utility theory.  We will discuss the

implications and limitations of this theory later in this section.

3.2 Characterization of Decision Analysis via Influence Diagrams

As the name implies, an influence diagram is a graphical method to define influences

between nodes within the diagram.  Here, “influences” can be thought of as dependencies

between events, where the dependency may be deterministic or probabilistic.  An

influence diagram contains nodes and directed arcs between the nodes.  The nodes are

"variables" specific to the decision problem while arcs identify influences between nodes.

The major advantage of the influence diagram is that it shows, at a high level, the "big

picture" specific to a decision problem.

An influence diagram contains four important elements.  First, a square node indicates a

decision nodes (one or more may exist per influence diagram).  The decision node

indicates that more than one decision options are possible.  Second, an oval node

indicates a chance node (one or more may exist per influence diagram).  Chance nodes

indicate a probabilistic event, an event that may occur after the decision is made an acted

upon.  Third, a diamond node indicates an outcome node (usually only one per influence

diagram).  Outcome nodes represent the decision makers values about the outcome of a

decision.  Fourth, the arrows between nodes are arcs and indicate an influence from one

node onto another node.  The lack of an arc indicates no influence between the two

nodes.  Using these defined symbols, a simple example of an influence diagram is shown

in Figure 8.  Within this figure, we show a single decision node (which may contain
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many decision alternatives), three chance nodes (where node 2 is affected by nodes 1 and

3), and a single outcome node.

Figure 8.  Example of the structure and symbols used in an influence diagram.

One of the guiding principles in constructing the influence diagram is to realize that the

model represents the decision maker’s state of knowledge prior to making the decision (t

= 0).  As such, the influence diagram is not a flow chart (e.g., loops are not allowed).

Instead, an influence diagram depicts potential outcomes following a decision.

3.2.1 Decision Modeling Within the Prototype

Our incident advisor prototype consists of an expert system that is able to query the user

for relevant information applicable to the scenario at hand.  Based upon the user input,

the advisor system adjusts the analysis case in order to assemble an applicable decision

model based upon attribute influences.  As part of the model, we will consider items such

as uncertainty, the element of time, decision-maker utility, human performance,

characterization of decisions, and non-PRA elements (e.g., deterministic characteristics).

In general, the influence-based decision model will need to factor in a variety of issues.

One important aspect of the incident advisor is the incorporation of time into the decision

scenarios.  These time-based, or dynamic effects, can be grouped into two categories:

long term effects (such as aging, environmental variations, plant design changes, time
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until scheduled outages) and short time effects (such as time dependency of physical

processes, time to repair inoperable components, operator response times).  Many events

occurring during an accident undoubtedly pertain to the second category, short time

effects.  But, for an “incident,” longer time effects also may be important.  For example,

if one is considering the option of operating the plant at full power for an extended period

of time even though the plant is slightly degraded, then the time to scheduled shutdown

may be critical.  This operation time may be measured in months to over a year.

It is evident that the incident management influence diagram (and related decision model)

will have to deal with a variety of different types (and lengths) of times.  Under this

assumption, we will classify these times into three natural groups, (1) past occurrence, (2)

the present, and (3) future oriented.

The first category, past occurrence, represents passive types of information.  What has

occurred in the past is (generally) known.  Note that during upset conditions such as those

described in the PRA, emergency operating procedures, or accident management

procedures, details of the immediate past may not be available due to the potential of a

large quantity of information in a short duration of time.  This “information deluge” has

been noted in the literature and could be important during PRA-type situations (Milici et

al., 1995).  However, for the incident management prototype, past occurrences will most

likely represent the boundary conditions for the decision at hand.  Consequently, the past

occurrence category is important with regard to initially describing the problem for

modeling with the incident management prototype.  With respect to the influence

diagram, one captures the past via boundary condition nodes.

Note though that for the past occurrence category, one should not assume that “past

history” implies no uncertainty.  Modeling parameters such as repair costs to fix an

inoperable component may rely on actual repair data.  But, since the repair process

exhibits stochastic traits, the prediction of a repair cost is not exact.  One will find that

uncertainty enters into the decision-making picture in all three of the above categories.
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The second category, the present, represents the “here and now” at the time of the

decision.  During an off-normal incident, the plant process equipment will provide

feedback as to the nature of the situation.  This process feedback may indicate directional

information (e.g., leak rate from the steam generator tube is increasing by X l/hr) in

addition to absolute information (e.g., the temperature in the secondary is Y °C).  Also,

and maybe most importantly, this category (combined with the past occurrence category)

represents the decision-makers state of knowledge at the time the decision must be made.

From this, one can deduce that the decisions themselves – including the determination of

decision alternatives – are encompassed within the time window in this category.  Thus,

the influence diagram will display the decision nodes, representing the present.

The last category, future oriented, represents the response that occurs as a function of the

particular decision that was made in the present category’s time window.  It is this

category that is most visible in the influence diagram since the majority of the diagram

nodes represent events following a decision.  The future oriented response generally will

include a mixture of hardware and human actions.

Also included in the future oriented category are PRA-related issues such as the potential

for core damage conditional upon (a) the boundary conditions at the present and (b) the

particular decision to be taken.  The use of the Level 1 PRA is an important part of this

time window category.   In the case where it is very likely that the plant will trip off-line

given the present situation, there would not be a large incentive to continue operation to

the point that the incident drives plant operation (as opposed to the operators managing

plant operation).  Other past nuclear power plant management approaches, for example

by Milici et al (1995) focused primarily on actions following core damage, or in the

realm of severe accident management.  In the Milici et al application, their focus was on

taking a single event and determining the possible “plant paths” that could follow once

the core begins to melt.  Consequently, their probabilistic models (given by Bayesian

belief networks) represented typical Level 2 PRA models, for example containment

pressure, state of water injection systems, and various plant damage states.  Also, the

decision model focused solely on risk as the performance measure (unlike our
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application, where plant risk is one of five measures).  Our decision model represents the

“future” as actions following a decision, where we start from a variety of potential events

(all possible initiating events after implementing a decision alternative) that will

ultimately wind down into one of two states – core damage or no core damage – as found

in our influence diagram outcome nodes.  Consequently, our decision model construct is

almost a “mirror image” of that found in the accident management literature.  In

summary, the chance nodes and the outcome node in our decision model represent the

future starting from the decision to a predetermined point later in time.

These three time categories, past occurrence, the present, and future oriented, all play

important roles in the construction of the decision making model for incidents.  The

categories also influence the modeling and data the are relevant for the prototype since

different items (e.g., the PRA, decisions, and chance node information) may be required

at different points in the overall process.  Ultimately though, we store information related

to these items in the incident advisor knowledge base.

3.2.2 Generalizing the Decision Model

The structure of knowledge base is centered upon storing relationships. In this knowledge

base, a “node” represents any possible attribute that may be found in the decision model

influence diagram, including decision alternatives, chance nodes, and outcomes.  Also,

since the nodal information is stored in a relational database, we have the ability to “nest”

nodes.  While this feature is not found in traditional influenced diagram/decision tree

tools, the incident advisor prototype structure allows for the abstraction of high-level

decision nodes into sub-nodes.  By controlling the node relationships and node types (via

its attribute), we can define a hierarchy within an influence diagram.  For example, we

may have a node identified as “pump system fails to operate” which may appear on the

incident-specific influence diagram.  But, behind this pump node could be many other

sub-nodes representing individual pump failures, common-cause failure mechanisms,

operator recovery actions, etc.  These sub-nodes would then be utilized to determine the

“pump” node failure probability visible in the influence diagram.
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Once the knowledge base is populated with plant-specific information related to decision

making, we may use heuristics to traverse through the knowledge base.  This traversal

process then defines the incident-specific influence diagram.  An example of code that

performs the traversal through the knowledge base is shown in Table 2.

Table 2.  Routine for knowledge base traversal for influence diagram construction.

<!-- Based upon user input, find starting node -->

Current.Node = Starting.Node

<!-- Find all nodes in the knowledge base that influence CURRENT node -->

Find_Influences(Currrent.Node) = ListBack.Node

<!-- Note that ListBack.Node is an array of Nodes that influence the current node -->

LOOP THROUGH ListBack.Node

<!—Recursively find nodes that influence current node in ListBack.Node -->

Find_Influences(ListBack.Node) = NewList.Node

LOOP THROUGH NewList.Node

. . .

END LOOP

END LOOP

<!-- Once all the “backwards” nodes are found, find the “forwards” nodes -->

Find_InfluencedBy(Currrent.Node) = ListForward.Node

<!-- Note that ListForward.Node is an array of Nodes that is influenced BY the current node -->

<!--Add the nodes that have already been found -->

ListForward.Node = ListForward.Node + ListBackward.Node

LOOP THROUGH ListForward.Node

<!—Recursively find nodes that are influenced BY current node in ListForward.Node -->

Find_InfluencedBy(ListForward.Node) = NewList.Node

LOOP THROUGH NewList.Node

  . . .

END LOOP

END LOOP
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The influence diagram construction rules listed in Table 2 are illustrated, step-by-step,

graphically in Figure 9.  In step 1, the initial “entry point” into the knowledge base is

known and is used to begin the influence diagram construction.  In this example, the

incident was the loss of a pressure transducer.  In a nuclear power plant, losing a pressure

transducer impacts the probability of tripping the plant, hence the “trip|PT” nomenclature

(which is read as trip given loss of pressure transducer).  In step 2, the routine determines

all nodes in the knowledge base that affect or influence the starting “trip|PT” node.

Now that the first level of influences have been found in step 2, then the routine needs to

determine all nodes that affect the nodes found in step 2.  Consequently, in step 3, the

example shows that two nodes affect the “repair” node.  In general, this process of

determining the “backward” influences is repeated recursively.  For our example, the

routine requires only three steps to identify all the “backward” influences originating

from the starting node.  Following the “backward” influence determination, the routine

must find the “forward” influences.  So, as shown in step 4, we find all nodes that are

affected by the “trip|PT” node, where only the probability of tripping the plant is found.

This node is now treated as a new “starting” node, where the routine has to repeat the

process described in steps 2 and 3.  Eventually, after recursively finding the applicable

nodes and influences, one is left with the relationships identified in step 6 of Figure 9.

These relationships then may form the basis of developing an influence diagram, a

decision tree, or the framework for event simulation.
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Figure 9.  Example of the steps performed by the knowledge base traversal routine for a

representative incident case.
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Since influence diagrams provide a model representing the “big picture” of the decision

process, we can generalize the structure from using the node traversal routine on the

incident knowledge base.  The results of this generalization are shown in Figure 10.  Here

we can see that the decision model is made up of six major parts:

- Decision alternatives – these include the options specific to the incident.

- Incident specific elements – these include the possibility for repair, the type of

failure mechanisms present, and other unique features related to the incident.

- Boundary conditions – these include the plant state and time until the next outage.

- Plant upsets – these include initiators such as transients/leaks that lead to

complications.

- Plant response – these include the plant system response to any upset conditions.

- Outcomes – these include the outcomes of interest to the decision maker.

Now that the general structure of the decision model has been defined via influence

diagrams, we need to focus on the other major model supporting the primary decision

model, namely that of decision maker preferences.
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Figure 10.  Major elements in a generalized version of an incident-specific influence

diagram.

3.3 Decision Maker Preference

In order to describe the key elements of the multiattribute utility decision process, we will

describe the process in reverse.  First, we will present the theory behind the outcome,

expected weighted disutility for all decision alternatives, of the decision process.  Second,

we will discuss the inputs (e.g., disutility, weights) local to the expected weighted

disutility.  Third, we will explore the decision maker’s risk behavior as it relates to the

decision model performance measures.
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3.3.1 Application of Utility Theory

Utility theory is a method to translate decision-maker preferences and beliefs, in the

context of a known situation, into numeric scores that will ultimately be used to rank

decision alternatives.  If every decision in incident management had only one attribute of

interest, say monetary loss, and the decision-maker responded to economic losses in a

linear fashion regardless of the magnitude of the loss, we would not need to use utilities.

Instead, we could simply use the monetary loss, on a cardinal scale, to rank decisions.

But, few decisions, especially those at a nuclear power plant, affect only one attribute of

interest.  Further, it has been demonstrated via experimentation that decision-makers are

not always “risk neutral” (e.g., they do not exhibit a linear response for monetary losses)

as the consequences increase (Machina, 1982).  Consequently, as part of rational decision

making via formal methods, one must rely on the science of utility theory.

Decision researchers subdivide utility theory, and its associated decision making

counterpart, into two types of models – “decision making under risk” and “decision

making under uncertainty (Knight, 1921; Winkler, 1972).”  Decision making under risk

embodies situations where one knows the probability of any particular state or outcome

in the model, but a particular decision-related state is unknown (or exhibits stochastic

behavior).  An example of this type of model is for the decision on placing a bet upon the

roll of a die – assuming a fair die one knows the probability of a specific outcome, but the

actual end result of the toss is not known until after the die is cast. Decision making under

uncertainty represents the case where the model states are stochastic and the associated

probability of any particular state is unknown. An example of this second type of

application is for the decision of whether or not to take an umbrella along on a long walk

– the possibility of rain is not known exactly and the ultimate outcome is not known until

after the decision is made and carried out.  In other words, the “under risk” category

represents aleatory models with no epistemic uncertainty while the “under uncertainty”

category represents aleatory models with epistemic uncertainty.  The models that we will

encounter for incident management typically fall in the latter case, decision making under

uncertainty.
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Coupled with the decision model are the criteria one would use when making decisions

based upon the model in question.  For example, the use of expected value is generally

touted as the principal criteria for decision making.  But, if we had a decision model with

no epistemic uncertainties and the states of the model were know with certainty, one

would simply chose the decision with the smallest loss (as measured by disutility).

However, since our decision making takes place on the stage of uncertainty, the decision

criteria is more complex.  Typically, utilization of the expected value approach for

decision criteria is applicable only when applied to utilities or applied to outcome metrics

when the uncertain outcomes are not too extreme as to cause shifts in preference.  But,

the use of expected value is not free of complications.  We have already discussed the St.

Petersburg paradox regarding lotteries with the potential for infinite expectations.  Also,

the Allais paradox is widely cited as demonstrating a weakness with the use of expected

utility (Machina, 1982; Machina, 1987; Conlisk, 1989).  Rogers and Fleming note in their

work related to nuclear power plant accidents that the “problem with [expected value] is

that a single rare event may be catastrophic and financial survival is not assured (Rogers

and Fleming, 1998).”

In this thesis, we rely on utility theory to describe our preference in avoiding negative

outcomes or consequences.  Hence, we use the term disutility to refer to the numerical

value of the outcome of an incident performance measure, where a measure may be

described by costs, safety, occupational hazards, and external attention.  Since we are

focusing our attention on negative outcomes, we ultimately will desire to avoid decisions

with (relatively) high values of disutility.  As is custom, we bound our disutility between

zero and one, where a “zero” disutility implies no or little impact while a disutility of

“unity” implies maximal impact.†

Since utility theory is a statement of preferential relationships, general rules that dictate

the behavior of use for this theory are known.  Two basic axioms of utility theory are:

                                               
†  Alternatively, we could have utilized a negatively-valued disutility, where the range would span from 0

(best outcome) to –1 (worst outcome).
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Utility Axiom 1 – Preference Ordering.  For attribute X, if outcome x1 is preferred to

outcome x2, then utilities U(x1) > U(x2). If outcome x1 is not preferred to outcome x2, then

U(x1) < U(x2).  If outcome x1 is indifferent to outcome x2, then U(x1) = U(x2).

Utility Axiom 2 – Equivalence.  If one is indifferent between (1) a certain outcome x1 or

(2) the lottery of outcome x2 (with probability p) and outcome x3 (with probability 1 – p)

then utility U(x1) = p U(x2) + (1 – p) U(x3).

An integral part of formal decision making models is chance or probabilistic events.

These events represent uncertain, aleatory outcomes.  Dictating the framework for these

probabilities are the three axioms of probability theory (Halmos, 1944):

Probability Axiom 1 – Scale Interval.  The probability of event X, P(X), should be a

number including or between 0 and 1 on a cardinal scale.

Probability Axiom 2 – Certainty.  If event X represents a certain event, then P(X) = 1.

Probability Axiom 3 – Countable Additivity. If events X1, X2, …, Xn are disjoint (i.e.,

mutually exclusive) then P(X1 ∪  X2 ∪ …∪  Xn) = P(X1) + P(X2) + … + P(Xn).

When we couple the axioms of utility theory and the theory behind probabilities with the

axioms of coherence (Winkler 1972), we are left with the fundamental basis of formal

decision theory.  This trio of distinct, but related, axioms then defines formal decision

theory.  Our set of decision theory axioms is those of coherence, which include:

Coherence Axiom 1 – Ordering of Preferences. For attribute X, outcomes x1 and x2 can be

ordered by preference, of if they are of equal preference, can be equated to one another.

This axiom is effectively the same as Utility Axiom 1.
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Coherence Axiom 2 – Transitivity. For attribute X, if outcome x1 is preferred to outcome

x2, and if outcome x2 is preferred to outcome x3, then outcome x1 is preferred to x3.

Coherence Axiom 3 – Certainty Equivalent. For attribute X, if outcome x1 is preferred to

outcome x2, and if outcome x2 is preferred to outcome x3, then there exists a probability p1

such that a lottery of outcome x1 (with probability p1) and outcome x3 (probability 1 – p1)

is preferred to outcome x2.  Further, there exists a second probability p2 such that a lottery

of outcome x1 (with probability p2) and outcome x3 (probability 1 – p2) is not preferred to

outcome x2.  Lastly, there exists a third probability p3 such that a lottery of outcome x1

(with probability p3) and outcome x3 (probability 1 – p3) is indifferent to outcome x2.

Coherence Axiom 4 – Stochastic Dominance.  For attribute X, if outcome x1 is preferred

to outcome x2, and a third outcome x3 exists, then the lottery of outcome x1 (with

probability p) and outcome x3 (with probability 1 – p) is preferred to the lottery of

outcome x2 (with probability p) and outcome x3 (with probability 1 – p).

Coherence Axiom 5 – Substitutability.  For attribute X, if outcomes x1 and x2 are

indifferent, then they may be used as surrogates for one another in any decision problem.

Coherence Axiom 6 – Preference. For attribute X, if outcome x1 is preferred to outcome

x2, then the lottery of outcome x1 (with probability p1) and outcome x2 (with probability 1

– p1) is preferred to the lottery of outcome x1 (with probability p2) and outcome x2 (with

probability 1 – p2) only when p1 > p2.

We illustrate the set of coherence, utility, and probability axioms defining formal

decision theory within Figure 11.  Within this figure, we note that the resultant decision

criteria for decision makers that obey the trio of axioms is that of expected utility.

Figure 12 provides a general overview of the formal decision process described in this

paper.  In this figure, we show, in a generic fashion, the key portions of the incident

management.  The output, expected weighted disutility, is quantified as part of the
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Figure 11.  Representation of formal decision making as the amalgamation of coherence,

utility, and probability axioms resulting in the decision criteria of expected utility.
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Figure 12.  Illustration of the formal decision process beginning with an incident an

ending with the quantification of the decision model.  The arrows indicate the flow of

information specific to that module.

“analysis” box, which is used as one part of quantitative incident management.  The other

part of incident management is human reasoning and introspection – but the focus in this

thesis is on quantitative analysis.
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The general form of the weighted disutility, our performance index (also called the

“decision rule†”) is given as a function of two general parameters:

),( ii uwfPI =   (2)

where i indicates a particular performance measure (cost, safety, etc.), w represents a

normalized weight, and u is the disutility for the i’th measure.  The general expression

shown in Equation 2 only serves to describe that the our preference amongst decisions

will be a function of performance measures, the weights of those measures, and the

disutility associated with decision-specific outcomes.

To develop numerical results, need to describe the interactions between the parameters in

Equation (2) in a more illuminating fashion in order to actually make decisions.  Thus,

we turn to a slightly more interesting version of the performance index (Keeney and

Raiffa, 1993; Winkler, 1972) for the case of three performance measures X, Y, and Z:
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where w1 is the weight for attribute X; w2 is the weight for attribute Y; w3 is the weight

for attribute Z, w4 is the weight for the joint outcome of X and Y; w5 is the weight for the

joint outcome of X and Z; w6 is the weight for the joint outcome of Y and Z; w7 is the

weight for the joint outcome of X, Y, and Z; u(x) is the marginal (or unconditional)

disutility of attribute X; u(y) is the marginal disutility of attribute Y; u(z) is the marginal

disutility of attribute Z; u(x, y) is the joint disutility for X and Y; u(x,z) is the joint

disutility for X and Z; u(y, z) is the joint disutility for Y and Z; and u(x, y, z) is the joint

disutility for X, Y, and Z.  In this paper, we use the notation that X is a particular

attribute, x is a specific level of that attribute, and u(x) is the disutility associated with a

specific level of attribute X.

                                               
†  The decision rule, or decision criteria, really is manifested by determining the expected value of the

weighted disutility, which we then uses to rank decisions (where low values are preferred).
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During the determination of attributes for incident management at nuclear power plants,

the decision maker decided on a total of five performance measures: economics,

radiological dose, industrial accidents, safety, and stakeholder attention.  Consequently,

to derive the full equation for the performance index would result in a functional form

with 31 terms, each with their own weight.  In decision science, it is typically argued that

the relationships described in Equation 3 should be simplified for a variety of reasons,

including:

- The decision results are used to advise (e.g., risk-informed applications) rather than

decide (e.g., risk-based applications), thereby allowing errors or discrepancies in the

process to be discovered and overcome

- The decision attributes are fundamental, thereby prohibiting interaction between the

attributes.

Unfortunately, none of the above points provide technical justification for simplifying

Equation 3.  Ideally, one would strive to determine the tradeoff between simplicity

against predictability.  However, the science behind model selection is beyond the scope

addressed in this thesis.  Consequently, we will not enter into the discussion of issues like

predictive accuracy (Forster, 2001) or “knowability” (Casti,1990).  Instead, we will point

out that we can greatly simplify the performance index function if the performance

measures themselves are additive independent, where additive independence also implies

utility independence. (Keeney and Raiffa, 1993)  While the additive model may be

considered to be an approximation (Clemen, 1996), in many cases the model is adequate.

For the special case of additive independence, when we have three performance measures

X, Y, and Z, the performance index becomes:

)()()( 321 zuwyuwxuwPI ++= (4)

or, in general, we can simply sum the weighted disutilities for each performance measure.
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For our case with incident management, we would then have:

rsstakeholdesafetyaccidentsdoseeconomics

rsstakeholdesafety

accidentsdoseeconomics

PIPIPIPIPI

rsstakeholdeuwsafetyuw

accuwdoseuweconomicsuwPI

++++=

++
++=

)()(

.)()()(

(5)

Note that it has been pointed out in the literature that for additive independence to apply

“there cannot be any interactions among the performance (attribute) measures” (Weil and

Apostolakis, 2001).  Interactions between the attributes are allowed, depending on the

type of interaction.  For example, probabilistic dependency between the attributes is not

only permissible, but to be expected.  A decision alternative that results in an accident is

likely to have high costs, high safety impacts, and a high level of external attention.  But,

there are other dependencies that one must consider when utilizing the expression in

Equation 5.  In general, there are four kinds of independence that play a role in DM:

- Probabilistic independence

- Preferential independence

- Utility independence

- Additive independence

Probabilistic Independence.  This type of independence is the standard probability

definition of independence between two random variables that you would find in any

probability theory textbook.  For example, for events A and B, if they display

probabilistic independence, then P(A ∩ B) = P(A) ⋅ P(B).  In our case, if two

performance measures (X and Y) are probabilistically independent, we are allowed to

describe their expectation as:

E[u(x1, y0) ∩ u(x0, y1)] = E[u(x1, y0)] ⋅ E[u(x0, y1)] (6)
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where x0, x1 are specific levels of the X performance measure and y0, y1 are specific

levels of the Y attribute.  Note that probabilistic independence is an issue related to

interactions at a probability level, and as such, impacts the determination of metrics such

as expectation and variance.  While a subtle point in the context of decision making, the

aspect of probabilities being separate from preference (and disutility) is critical to both

the development of appropriate disutilities, attribute weights, and the quantification of

weighted disutility.  Probabilistic dependence does not interject itself into the topic of

model selection for weighted disutility; instead we have other independence (conditional,

preferential, utility, and additive) conditions to guide the form for weighted disutility.

Preferential Independence.  This type of independence represents static preference of two

utilities in the presence of a third attribute.  Attributes X and Y are preferentially

independent if u(x, y) given u(z0) does not depend on the particular level z0 where X, Y,

and Z are attributes and z0 is a specific outcome for a attribute Z.  For example, assume X

is cost, Y is loss of property, and Z is availability of donuts in the on-site cafeteria.  For

incident management at nuclear power plants, a decision maker preference for cost versus

property loss will be indifferent to the availability of donuts, or:

u({x | z}, {y | z}) = u(x, y) (7)

While this type of independence may seem uninteresting (since we obviously do not care

about donuts in the context of incident management), this property allows us to determine

that many attributes may be irrelevant, thereby simplifying the decision process.  In other

words, when making complex decisions, we do not need to have a large set of interests

(in general, the set of interests is infinitely large) – we only need to focus on attributes

that sway decision alternative outcomes.

Utility Independence.  This type of independence is used to explore potential preference

interactions between utility attributes.  For example, X is utility independent of Y when

conditional preference for utility X (given y) does not depend on y.  In other words, a

particular attribute outcome does not affect the preference amongst attributes, even if the
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outcome is extremely negative or positive.  This restriction implies that, given a range of

values for one attribute, a second attribute’s utility (or disutility) does not change.  Note

though that if X is utility independent of Y, the converse is not necessarily true – when

the converse is true, this condition is denoted as mutually utility independent.  When

combining mutually utility independent attributes, Equation 3 is applicable.

With our decision-makers, we determined the five performance measures relevant to the

incident management context.  We later ran an experiment to test the notion of utility

independence, specifically within the context of safety.  We deliberately selected two

measures that, although not utilized in the current framework of our weighted disutility,

could possibly demonstrate an extreme case where attributes were not utility independent.

First, we denoted one performance measure as the strength of containment,† where we

had three scales for containment performance: (1) robust, (2) moderate, and (3) weak.

Second, we set the other performance measure as core damage probability, and fixed this

attribute at one of two levels: unlikely (a probability of 1E-7) or likely (a probability of

0.2).  We then elicited the containment performance disutility first assuming that core

damage was unlikely.  It was then communicated to the decision-makers that the

disutility-determination process was to be repeated, but they were to assume that core

damage was likely.  The results of this experiment, as demonstrated by the two

conditional disutilities, are shown in Figure 13.

The two disutility curves for containment performance indicate that our decision

attributes of core damage and containment performance are not exactly utility

independent since the two curves do not coincide.  But, we were surprised that the two

curves do not deviate by a substantial amount (the maximum deviation is about 31%,

which is within the variability of the weight determination process -- see Appendix C for

details on this point).  Since containment performance is critical if core damage is likely,

we would have thought it natural that preference on performance would be correlated

                                               
†  The nuclear power plant containment serves as a defense barrier to prevent release of radioactivity in the

event of a severe core melt accident.
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with likelihood of a core damage accident. Instead, preference for containment

performance was better described as being of fundamental importance regardless of

accident likelihood.  Hence, as an approximation, we could model these two performance

measures as being utility independent.  And, of all the performance measures that we

have previously discussed for incident management, it was thought that these two, core

damage and containment performance, were candidates for not being utility independent.

Thus, we may be justified in assuming that the remaining performance measures are

(approximately) utility independent.

Figure 13.  Two performance measure experiment test results for utility independence.

Additive Independence.  This type of independence represents preference amongst utility

lotteries (i.e., alternatives represented by known utility outcomes and associated

probabilities).  If attributes X and Y are additive independent, then the decision-maker

will be indifferent between the two lotteries shown in Figure 14.
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Figure 14.  Lotteries used to test utility functions for additive independence.

For example, if X is cost and Y is safety, then outcome x may represent the lowest cost,

outcome x’ may represent the maximal cost, outcome y may represent the safest

condition, and outcome y’ may represent the most risky condition.  If X and Y are

additive independent, then the decision-maker must be indifferent between (1) a 50-50

lottery where the “payoff” of lottery A is lowest cost and lowest risk or the highest cost

and highest risk and (2) a 50-50 lottery where the “payoff” of lottery B is a combination

of low cost/high risk or high cost/low risk.

Additive independence is the strongest of the four dependence types and leads one to an

additive utility function.  In other words, if attributes X, Y, and Z are additive

independent then we could utilize Equation (3) by observing that the joint term weights

are zero, or w4 = w5 = w6 = w7 = 0.  Note that additive independence implies mutual

utility independence, but the converse in not necessarily true.  Decision makers strive to

make use of attributes that are additive independent due to the fact that they are then

allowed to use the function form of weighted utility described in Equation 5.

Alternatively, many practitioners simply invoke the principle of Occam’s razor (one

should not make more assumptions, or complications, than the minimum needed).  While

Occam's razor allows us to "drop" variables or model constructs that are not really needed

to explain a particular domain outcome, one runs the risk of oversimplifying a

complicated methodology, thereby jeopardizing its predictive capabilities.  But, in lieu of

attempting to utilize an overly complicated decision model, Clemen (1996) suggests
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“…in extremely complicated situations with many attributes, the additive model may be a

useful rough-cut approximation.”

As a side issue, we assume that the decision-maker preferences – and corresponding

disutility – do not change over time.  Researchers like Keeney and Raiffa do propose

utilities for time streams of unequal length, where a “family of conditional utilities” may

arise (Keeny and Raiffa, 1993).  But, the contexts of these situations were assumed to be

over long periods, where examples included pension, career, and savings decisions.

While cases have been considered where preference varies over time (Phelps and Pollak,

1968), it is not clear that such implications would apply to incident management at

nuclear power plants (where it is desirable to have less subjectivity, hence the

introduction of formal decision methods) since the time window is short.  This restriction

does not imply that if the context of the decision problem changed that preferences and

disutilities would not change.  For some non-incident situations (say in the case of a

severe accident), it may be easy to postulate that the decision-maker’s focus would shift

from a balanced approach of cost, safety, worker health, etc., to one predominately

centered upon the safety of the public around the plant.  Hence, it is important to once

again point out that the issues and experimental data presented in this paper are solely for

the context of incident management at nuclear power plants.

3.3.2 Inputs to Expected Disutility for Incident Management

With the discussion from the previous section, consistency checks on the decision

attributes (which will be presented), and discussion with our decision-maker, we were led

to the assumption of using a linear, additive weighted disutility for the performance

index:

attentionsafetyaccidentsdosecost

attentionsafety

accidentsdosecost

PIPIPIPIPI

attuwsafetyuw

accuwdoseuwcostuwPI

++++=

++
++=

.)()(

.)()()(

(8)
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As part of this function, we will need to determine both performance measure weights

(w) and associated disutilities (u).  Once we have this information, we will be able to

question the “linear additive” assumption. For example, we may develop

multidimensional indifference curves that illustrate tradeoffs from one attribute to

another.  These so called “sanity checks” will allow us to ensure consistency between

(presumed) independent attributes.  If inconsistencies cannot be resolved, it may be

necessary to rectify independence issues by returning to a more complicated functional

form of the performance index.

We have already indicated that the applicable decision performance measures to incident

management were costs, safety, occupational hazards, and stakeholder attention.

Questions that arise are “how are these measures derived?” and “how do we obtain the

weights for each measure?”  The short answer to each question is (1) through deliberation

with the decision-maker we determined applicable performance measures and (2) through

the application of AHP we derived measure weights.  Since decision making is a

deliberative process, the outcomes of the process may evolve as new insights or

discussions are presented.  For example, during our workshops with our decision makers,

the structure and node in the value tree were modified through three revisions.  We would

like to point out important modifications to the value tree that resulted over the course of

these revisions.

First, the economics category had two performance measures that were ultimately

combined into a single category.  We originally identified two types of costs,

short-term costs and long-term costs.  The rational behind the separate categories

was that for some incident related decisions, the decision-maker would incur up-

front (realized) costs.  But, depending on future (uncertain) events, an incident

could develop into a worse condition and could potentially result in much higher

costs (for example, in the case of a accident or unchecked degradation that

damages expensive equipment).  In other words, we were addressing both

deterministic costs (i.e., up front costs) and probabilistic costs (i.e., potential

future costs).  But, a dollar now should be worth a dollar (discounted
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appropriately) later.  Keeny and von Winterfeldt acknowledge this point by noting

that “future costs are discounted to a present value equivalent” (Keeney and von

Winterfeldt, 1994).  Consequently, in later revisions to our value tree, the two cost

types were combined into a single “cost” category.

Second, like the economics category, the stakeholder portion of the value tree

originally had two attributes, the regulator and the media.  These two categories

were ultimately combined into a single category, stakeholders.  It was felt by the

decision-maker that negative attention from outside, the regulator, the media, or

the public, was undesirable and, in fact, may be highly correlated.  It was thought

that, for incident management, the regulator would be the first party involved (if

any) since these events do not typically result in “high profile” situations.  Then,

if the regulator is concerned, the media attention may increase.  Consequently, it

was decided that a single attribute, stakeholders, was justified and should focus

mainly on interactions with the nuclear regulator.  Note though that the

delineation and weight placed on this attribute may vary from country to country.

Third, the “core damage” performance measure under the safety objective was

modified more than once.  Originally, the attribute was core damage frequency,

but was changed after the first revision to core damage probability to reflect the

fact that different incidents may span vastly different time periods.  In general, the

longer the time period, the higher the probability of core damage.  But, like the

probabilistic problem we faced on the “cost” issue, it is problematic to include

probabilities directly in the value tree.  This “probability-in-the-value-tree

problem” is not unique to low probability, high consequence situations like

running a nuclear power plant, as evidenced by the difficulty experienced by

Wright and Goodwin in their “new job” problem (Wright and Goodwin, 1999).

Ultimately though, as noted by others, the value tree should (as its name

indicates) reflect the decision-makers values (Keeney and Raiffa, 1993; Clemen,

1996).  Consequently, one should strive to avoid introducing probabilistic

information (however well intentioned!) directly in the value tree and
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corresponding decision attributes.  All probabilistic interactions should take place

when quantifying the performance index, for example, when determining its

expected value.

To summarize the value tree evolution, we removed probabilistic aspects (potential costs,

probability of core damage) in order to focus on observable events.  While not explicitly

stated in much of the current decision analysis literature and texts, we believe that

construction of a decision-maker’s value tree should have attributes that are measurable.

Second, we identified, through deliberation, that media perception and regulatory interest

were not preferentially independent.  This observation allowed us to reduce the number

of attributes (by subsuming one), yielding a slightly less complex value tree and weighted

disutility function.  Note that deliberation played a critical role both in shaping the

structure of the tree and in determination of the performance measure weights.  As part of

this deliberation, we performed “sanity” checks of the nominal results with the intent that

the decision makers could see the overall impact from their discussions.  In one case, it

was these sanity checks that caused a group of three decision makers to adopt the position

of a fourth (sole) decision maker, mainly due to the fact that the results appeared to be

more reasonable for the lone decision maker’s value tree.

With the functional form of the performance index now set and the value tree finalized,

we may proceed to determine (1) performance measure weights and (2) performance

measure disutilities.

3.3.3 Performance Measure Weights

The performance measure weights were determined by utilizing AHP for pair-wise

comparisons at each level in the value tree (Saaty, 1980).  The value tree, with the

resulting weights, is shown in Figure 15.  During the AHP process, the preference

comparisons were always made with respect to the next highest level.  For example,

when determining the weights on economics, safety, and stakeholders, the context was

with respect to “proper incident management.”  Then, following AHP, deliberation
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Figure 15.  The value tree with performance measure weights determined from the

AHP/deliberation process.

was used to modify the weights to better reflect the decision-maker preferences.  The

results of this AHP-deliberation process indicated that the decision-maker values the

utility of economics over stakeholders by about a factor of two (0.32/0.15), while that of

safety is not quite a factor of two over economics (0.53/0.32).
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As an aside, we note that a related study was found after our analysis was complete that

focused on decision making following a nuclear accident (Lindstedt et al, 2001).  While

the context here is somewhat different that ours, the researchers and decision makers

nonetheless developed a value tree that, at the first level, was quite similar to ours.  Their

determined weights were cost = 0.26, health = 0.43, and sociological = 0.32.  Slightly less

emphasis was placed on cost and health, but more on external impacts.  This bias in

weights toward external impacts may be due to the fact that here the decision makers

were not the operators/owners of the nuclear power plant, but instead were members of

the public (e.g., farmers, dairymen).

To determine both the structure and weights associated with each node, we held a

workshop with the primary decision makers.  A list of the activities during the workshop

is shown in Table 3.  The deliberation phase of the project proved useful for revising the

performance measure weights.  Originally, the decision makers were split into two camps

where three of four provided weights that were similar while the fourth decision maker

had substantially different weights.  During the deliberation, we presented consistency

checks for the preliminary results that lead the group of three to revise their weights

closer to those of the single decision maker.  If we had taken an average of the four sets

of weights, the results would have been much closer to the group of three weights rather

than those shown in Figure 15.  We found that the combination of consistency results

combined with deliberation yields a useful procedure for the ultimate determination of

decision maker preferences.
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Table 3.  Activities performed during the preference elicitation workshop.

Topic Purpose

Introduction to decision methodology Ensure that decision makers understand the

context of the preference elicitation

Discussion of AHP Discuss implementation of the AHP

Development of the value tree Finalize the value tree including the general

structure and nodal weights

Development of the utility functions Elicit preference information for each of the

value tree performance measures

Presentation of weights for final deliberation Provide a forum for deliberation of the value

tree weights (note that deliberation of the

utility functions was held in a later workshop)

3.3.4 Performance Measure Disutilities

Following the structure and weight determination of the value tree, the disutility

functions need to be constructed.  First though, let us define the types of scales of interest

for our disutility functions.  In general, within the decision sciences, there are three types

of scales that are utilized, cardinal, ordinal, and nominal.

Cardinal scales represent specific outcomes (e.g., in our notation for attribute X, values

associated with x and x’) where the difference between outcome values has meaning to

the decision maker.  For example, losing one million euro versus losing two million euro

is a quantifiable difference and will impact profitability.  Within the cardinal scale

category, we can subdivide the scales further into interval or ratio types.  If the location

on the cardinal scale is arbitrary, the scale is called an interval scale, otherwise it is called

a ratio scale.  An example of an interval, cardinal scale is temperature since zero Celsius

and 100 Celsius are arbitrarily set based upon properties of water.  The years on a
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calendar are another example of an interval, cardinal scale.  An example of a ratio,

cardinal scale is a ruler since having a value of zero implies no distance (a “true” zero).

The amount of money in your bank account is another example of a ratio, cardinal scale.

The cost and radiological dose attributes utilized in our value tree embody a ratio,

cardinal scale.

Ordinal scales represent outcomes where the difference between outcomes does not have

numerical meaning, but the ordering of outcomes implies preference to the decision

maker.  For example, ranking outcomes as small, medium, and large classified the

outcomes, but the difference between a medium and small outcome is not quantifiable.

An example of an ordinal scale would be home address numbering, where the first house

on the block may be 1, the second 2, the third 3, etc., but the third house is not necessarily

three times as far down the block as the first house.  Surveys of preference are frequently

based upon ordinal scales (I prefer apples to oranges and oranges to grapes, for example).

The industrial accidents, core damage, and external attention attributes utilized in our

value tree embody an ordinal scale.

Lastly, nominal scales simply list outcomes and provides the least amount of information

to the decision-maker.  An example of a nominal scale would be the list of fonts available

from within your word processing software (Arial, Letter Gothic, Times Roman, etc.).

We did not employ nominal scales within the decision analysis framework.

As part of our initial workshops, we elicited disutility information from our decision

makers via application of AHP.  Then, in order to determine numerical values for the

attribute disutility functions, we must transform the AHP results into disutility values for

each attribute scale interval.  Hughes proposed a transformation that has been utilized to

convert AHP values to utility (Hughes, 1986).

u( i’th interval ) = (vi – “worst”)/(“best” – “worst”) (9)
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where vi is the AHP value of the i’th interval, “worst” is the AHP value of the least

desirable outcome, and “best” is the AHP value of the most desirable outcome.

Although not specifically identified in his paper, Hughes’ transformation only applies to

“beneficial” outcomes (measured by utility), which suggests that the transformation may

not be used for disutilities unless a modification is made.  Other researchers have used the

Hughes transformation for disutilities (Weil and Apostolakis, 2001), but we have found

that one must be careful when applying the transformation for disutilities.  Consequently,

we have developed a linear AHP-to-utility transformation that works for both utility (with

an increasing preference function) and disutility (with a decreasing preference function).

Using an example, we will demonstrate the modified transformation for disutilities.

First, assume that we operate a business where the total net worth of the business is one

million euro.  Now, we are asked to determine our disutility for monetary losses of three

categories, zero to one million euro, one to two million euro, and two to three million

euro.  Since losses larger than one million euro bankrupts the company, it is presumed

that the decision-maker will be indifferent between losses larger than one million euro.

Also, it is highly desirable to avoid large losses in general since the decision-maker does

not want the business to go bankrupt.  Consequently, the response to the AHP pair-wise

comparisons would look something like:

0 to 1 M€ 1 to 2 M€ 2 to 3 M€

0 to 1 M€ 1 9 9

1 to 2 M€ 1/9 1 1

2 to 3 M€ 1/9 1 1
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where a “1” indicates indifference and a “9” indicates absolutely more important.  For

example, losing zero to 1 million euro is absolutely more important than losing one to

two million euro.

The values from the AHP process are found (from the principal eigenvector) to be v(0 to

1 M euro) = 0.818, v(1 to 2 M euro) = 0.0911, and v(1 to 2 M euro) = 0.0911.  Both the

unaltered and the modified-Hughes transformations on the AHP values are shown via the

curves in Figure 16.  As can be seen in the figure, the unaltered transformation for

disutility is clearly incorrect since it indicates that losses of one to two million euro have

zero utility.  A monetary loss of this magnitude will bankrupt the business and, therefore,

should have a utility of one, not zero.

Figure 16.  AHP weight to disutility transformation example.
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Note that the disutility function above is plotted on an ordinal scale.  If the range

embodied within each scale interval is the same (which it is here, with a value of one

million euro), then the shape of the curve implies risk preference.  But, if the scale

intervals contain non-constant values, then the shape of the curve does not necessarily

indicate risk preference.

Our proposed AHP-to-utility transformation is defined by:
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where n indicates the number of disutility (or utility) scale intervals, i is the i’th disutility

scale interval, vi is the AHP value for the i’th disutility scale interval, vhigh is the AHP

largest value, vlow is the AHP smallest value, and ui is either the disutility or utility.  The

number of scale intervals (i) ranges from 1 to n.  Note that we could have kept the

Hughes’ transformation for utility and then, as a special case for disutilities, take one

minus the utility in order to obtain the corresponding disutility.  Instead though, the

proposed transformation works equally well for either the utility or disutility since it

focuses on the n’th scale as having utility or disutility of one and works back from the

n’th scale, looking at incremental changes in the AHP values.

Returning to our incident management value tree, we must transform the AHP values to

disutilities for all five performance measures.  The initial result of this process for the

cost measure is shown in Figure 17.  Within this figure, we have plotted the disutility for

cost on a linear, cardinal scale.  Consequently, the shape of the curve will indicate the

risk preference of the decision maker specific to economic losses.  Note though that only

four scale intervals were used to cover a large range of costs (almost ten orders of

magnitude) and, consequently, one must be careful in extracting insights from this
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disutility function.  Further, we have discovered limitations in the AHP process that

restrict its use for disutility (and utility) determination.  These limitations are discussed

later in Section 3.

Figure 17.  Example of initial determination of cost disutility function.

3.3.5 Decision Maker Risk Behavior

While the insights into the disutility function are useful, it is desirable to have more

formal metrics.  First, we need to determine the type of preference function we are

evaluating, either increasing or decreasing in consequence.  In our case, all five
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located in the lower right quadrant of the curves shown in Figure 18.  From this figure,

we can determine the decision maker attitude toward risk by knowing the concavity of

the disutility – if the curve is concave down the decision maker is risk prone and if the

curve is concave up the decision maker is risk averse.

Alternatively, the decision maker’s risk behavior can be determined via a numerical

evaluation of the disutility.  Specifically, we would calculate (Keeney and Raiffa, 1993):
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where RB(x) is the risk behavior as a function of the disutility derivatives.

From the RB(x) definition, we find:

If RB(x) > 0 then the decision maker is “risk prone”

If RB(x) < 0 then the decision maker is “risk adverse”

Also, one could use a “50-50 lottery” for the attribute outcomes to determine the decision

makers risk behavior.  For this query, the decision maker would be presented with two

lotteries (see Figure 19).  The first lottery, “A,” consists of a 0.5 chance of outcome x and

y (best outcomes for attributes X and Y) and a 0.5 chance of outcome x’ and y’ (worst

outcomes for attributes X and Y). The second lottery, “B,” consists of a 0.5 chance of

outcome x and y’ (best outcome for attribute X and worst outcome for Y) and a 0.5 chance

of outcome x’ and y (worst outcome for attribute X and best outcome for Y).
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Figure 18.  Illustration of “risk averse” and “risk prone” utility and disutility for

increasing (worst to best) and decreasing (best to worst) preference functions.
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Figure 19.  Lotteries used to test utility functions for decision maker risk preference.

One then determines the decision maker risk behavior by asking which lottery is

preferred, or if they are of equal preference, indifference between the two lotteries.

Knowledge of the outcomes is used to determine and contrast the disutility of the lottery

expected value versus the disutility of the lottery itself.  Based upon this information, we

use the certainty equivalent criteria to determine the risk behavior:

If  disutility(E[lottery]) > disutility(lottery)  then the decision maker is “risk prone”

If  disutility(E[lottery]) < disutility(lottery)  then the decision maker is “risk averse”

Here, “risk prone” indicates decision maker prefers “gambling” on the lottery rather than

taking the actual expected (i.e., average) return of the lottery.  In other words, if the

lottery was represented by a coin toss with a prize of $100 if heads and $0 if tails (so the

expected return of the lottery is $50), then a risk prone decision maker would not accept

$50 in lieu of the playing the actual lottery.

In the realm of disutility though, being risk prone is not necessarily negative.  This

behavior suggests that the decision maker would rather “take a chance” on getting a good

outcome – while risking the possibility of bad outcome – rather than accepting a certain

large (negative) outcome.  Consequently, this behavior might be explained by two facts.

First, the largest negative outcomes defined for our performance measures are quite
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extreme.  For example, the cost outcome measures spans approximately nine orders of

magnitude.  Second, there is an inherent belief that nuclear power plants are reliable and

robust – namely that the probability of an accident is quite low.  Consequently, for

incident management, it is unlikely that very negative outcomes will actually be realized

following a decision.  Thus, if the probability of an accident is low, then the decision

maker may live with the risk associated with large negative outcomes.  This behavior

would then appear as a risk prone disutility function (Wu-Chien and Apostolakis, 1983).

From the AHP-derived curves of disutilities, we determined, via graphical methods, that

our decision makers were risk prone.  Also, one should note that the disutility function

increases fairly rapidly over the region of interest.  We were not expecting the disutility

functional form to exhibit “risk prone” behavior since the general assumption towards

decision makers in realistic situations are that they generally show risk adverse behavior.

Nonetheless, we did find risk prone behavior for the disutilities of all five performance

measures. This behavior was checked in a second workshop utilizing lottery-based

questions (rather than AHP) and was found to be consistent with the AHP results (an

example of the worksheet used is shown in Figure 20).

Figure 20.  Example of the worksheet provided to the decision makers for determining

risk preference amongst the performance measures.
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If we plot the cost disutility on a logarithmic, cardinal scale, we can see the disutility

function better at the low end of the outcome scale (see Figure 21).  Note that in this plot,

we took the geometric average of a scale interval† to get an appropriate midpoint (for

example, the first interval was from zero to 14 million euro).  The upper end of the

disutility represents costs in the hundreds of millions of euro.  This large potential

outcome raises the question that small probabilities associated with the negative event

may influence the decision maker preferences, even though in decision theory, the

probability of an event is independent of the “worth” of that event.  While competing

theories such as “prospect theory” attempt to address such issues (Kahneman and

Tversky, 1979), we remain committed to decision theory.

Figure 21.  Example of initial cost disutility function plotted on a log scale.

                                               
†  A geometric scale value is needed since the elicitation for both cost and radiological dose was performed

by asking the importance for regions (e.g., costs of 10 to 100 million versus costs of 100 to 500 million).
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3.4 Checking Consistency of the Preference Information

Upon completion of the value tree, the disutility functions, and the functional form of the

performance index, the decision maker has the flexibility to perform a consistency check

(also called a “sanity check”) between weighted disutilities for each performance

measure.  Recall that the functional form of the performance index was given by a

summation of the disutilities for each measure.  Specifically for our case with incident

management, we have:

rsstakeholdesafetyaccidentsdoseeconomics

rsstakeholdesafety

accidentsdoseeconomics

PIPIPIPIPI

rsstakeholdeuwsafetyuw

accuwdoseuweconomicsuwPI

++++=

++
++=

)()(

.)()()(

(5)

Since the individual attributes are aggregated in a linear fashion, one consistency check

that is available comes from the realization that a particular value of a performance index

implies equivalence between any of the performance measure.  For example, if we

postulate a value of 0.01 for PIeconomics then, in theory, the decision maker should be

indifferent to a value of 0.01 for any of the other measures.  This indifference behavior

arises since we have encoded preference information directly in the disutility –

consequently we can utilize the additive behavior of Equation 5 to determine equivalent

outcomes between the different measures.

First, let us illustrate the calculation required for the equivalence for the attributes of cost

and industrial accidents.  If we equate two performance measures, we are stating that the

weighted disutility has the same numerical value.  But, in general, the weights of any two

measures will be different, thereby implying that for a given equivalence, the disutility

value will change to ensure that the weighted disutilities are the same.  To continue, we

must then know the weights of the cost and industrial accident measures.  From our

decision maker, we have determined that cost has a weight of 0.32 while industrial

accidents has a weight of 0.16.  Now, if we choose a weighted disutility value of 0.16,
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this would imply that the corresponding value of the industrial accidents disutility would

be maximized at 1.0 while the disutility for cost would be 0.5.  Further, since we know

the scales corresponding to the disutility for each measure, we have physical meaning

attached to both a disutility of 1.0 on industrial accidents and 0.5 on cost.  Specifically, a

disutility of 1.0 on industrial accidents implies a worker fatality while a disutility of 0.5

on cost implies a loss of about 10,000,000 euro (or approximately $9,000,000 in 2002

dollars).  Thus, we can state equivalence between a worker death and a loss of

10,000,000 euro based upon the value tree weights, the disutility functions, and the

additive form of the weighted disutility equation.  This process of picking a value of

weighted disutility (0.16 in our example) is analogous to the concept of indifference

curves, where for any of the five attributes with the same value of weighted disutility, the

decision maker should be indifferent between the five outcomes.

We now have a method of checking the consistency of all the value tree attributes across

the spectrum of ranges exhibited in each disutility function.  Consequently, we evaluated

all five attributes across the disutility range of 0 to 1 in order to determine applicability of

the attribute equivalence.  The results of this consistency check is shown in Figure 22.

From this figure, one can determine the equal worth of any two attributes for a single

weighted disutility value by taking a vertical slice through the attribute bars.  For

example, if a line were drawn from a cost of 10,000,000 euros, we would find that:

- Equivalent radiological dose is on the low end of the 50 to 2,000 mSv range

- Equivalent industrial accident is a worker fatality

- Equivalent core damage is no event

- Equivalent stakeholder interest is intervention by the regulator.

One would then want to take these equivalencies and determine if they seem adequate or

not.  For example, we could ask if it is reasonable that a worker fatality is “worth” about

10,000,000 euros.  To answer this question, we would need to determine a societal “value

of life” applicable to nuclear power plant workers and compare this monetary value to

that derived from the disutility consistency check.
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While the subject of assigning a monetary value to life is quite sensitive, we nonetheless

found a variety of empirical evidence that provided numerical information on this

subject.   Not surprisingly, much of the motivation behind life valuation has come from

the insurance industry.  Within this industry, the main thrust behind valuation is in

determining the “insurable value” rather than the value of life, where the primary

difference between the two valuations is that insurable value discounts for mortality. But,

the concept of life valuation does bring about a variety of definitions depending on the

analysis context.  Within the life insurance industry, the traditional metric of life has

Figure 22.  Consistency checks for equivalence between value tree attributes as a

function of costs.

been measured by “the capitalized monetary value of future earnings” (Aponte and

Dunenberg, 1968).  Since the insurance industry focuses on insurable life value, it is quite

concerned with specifics such as the age of the insured, health factors, earnings potential,



91

etc.  This specific approach differs from the approach required within our decision

analysis framework – here we are concerned with a generalized, societal life valuation.

Fortunately, this type of information is available from a variety of sources.  Rather than

discuss in detail the findings and results of each of these, we summarize those from the

published literature, along with a brief note, in Table 4.  Note that the 2002 euro amounts

in Table 4 reflect standard present worth discounting (Collier and Ledbetter, 1982) using

a discount rate of 3% per year.  Also, at the time of this writing, the conversion from

euros to dollars was approximately 1 € = $0.9.

Table 4.  Summarization of select published monetary life valuation.

Value of Life

(2002 euros)

Source Notes

990,000 Hofflander, 1966 Derived from future earnings potential of

“average man” in 1921.

2,600,000 Persson et al, 2001 Derived from Swedish road safety data

related to a willingness to pay to improve

traffic risk.

6,200,000 Keeney, 1997 Derived from mortality risks related to U.S.

Government regulations.

990,000 to

8,800,000

Blomquist, 2001 Derived from “analysis of jobs with

different wages and risks, consumption

decisions involving changes in risk and

time and money, and from direct

questioning involving risk-money tradeoffs

in constructed markets.”

1,800,000 Burke, Aldrich, and

Rasmussen, 1984

Derived from a review of “societal

expenditures for life-saving safety

measures.”
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A metric related to the question of life valuation is the NRC’s cost/benefit threshold of

$2000 per person-rem (U.S. NRC, 1997). If a decision alternative exhibits a value larger

than $2000 per person-rem then the proposed modification is not cost effective.  But, we

can convert this metric to an equivalent cost-to-fatality value.  Since one hundred rem

equals one Sievert, and approximately seven Sievert equals a fatality, then the cost-to-

fatality ratio can be calculated as $1,400,000, or approximately 1,600,000 euros.  This

synthesized value of life is within the data found in the general literature.

Based upon gathered evidence of the monetary worth of life, it appears that the

consistency check that equates a worker fatality with a loss of 10,000,000 euros is toward

the upper end of the collected data.  From the data shown in Table 4, it appears that the

value of life for a member of society is around two to five million euros.  But, since the

industrial accidents attributes focuses on worker fatality, the equivalence value should be

discounted since workers typically assume a higher risk than the population at large.

We could then evaluate other consistency checks, for example between a worker fatality

and a radiological dose.  Performing this check leads to a dose level of approximately 100

to 200 mSv being equal to a fatality.  One should contrast this check with the fact that a

fatal dose (in humans) is approximately 7,000 mSv (Cember, 1992).  Consequently,

based upon this check, it appears that the attributes of industrial accidents and

radiological dose are very inconsistent.  Further checks would indicate that other

attributes are similarly inconsistent.  Doing this check, we see that an equivalent cost

outcome, compared to a core damage event, is about 15,000,000 euros.  This

inconsistency yields a cost that is approximately a factor of 100 to 300 too low.  For

example, Rogers and Fleming (1998) estimated that a severe core damage event at an

U.S. nuclear power plant could range from 5 to 12 billion euros including replacement

power costs. Also, the U.S. Government mandates the maximum public liability for

nuclear power plant accidents at a level of 7.3 billion dollars (6.6 billion euros) by the

Price-Anderson Act (U.S. Government, 1990).  Thus, a realized cost associated with a

severe core damage event in the range of billions of euros is not unreasonable.
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To better understand the implications associated with these types of consistency checks,

we decided to evaluate other similar decision analyses that appear in the literature. While

not all papers provide enough information to fully produce a consistency check, we did

find a related project that did present the applicable information needed for this check.  In

a study of alternative siting for U.S. nuclear waste, Merkhofer and Keeney presided over

a major project, funded by the U.S. Department of Energy, that evaluated proposed waste

sites in a formal manner (Merkhofer and Keeney, 1987).  In their study, like ours, they

utilized a linear utility function to aggregate the various attributes of interest.  Their

functional form was slightly different though due to the method of assigning attributes

weights, but the overall concept is identical as that we described earlier.  In the

Merkhofer and Keeney study, each attribute had a scaling constant (K) and a utility (C).

Consequently, we could select an appropriate weighted utility (really disutility, but we

will keep the same notation as in the paper) and compare two attributes.  For example, we

selected a value of 100, which implies that for a particular attribute, K · C = 100.  Now,

the scaling constant for worker fatalities, public fatality (non-radiological), public

fatalities (transportation related), and cost were 1, 4, 4, and 1, respectively.  These

weights then dictate specific values of the utility function for each attribute.  For

example, looking at worker fatalities, K · C = 1 · C = 100, or C(x) = 100.  An outcome, x,

of utility 100 was noted (in the Merkhofer and Keeney paper) to be equal to 30 worker

deaths.  Similarly, for the other attributes, we find:

- Public fatality (non-radiological) utility implies 1 death

- Public fatality (transportation) utility implies 5 deaths

- Cost utility implies $29,600,000 (in 2002 dollars, assuming a 3% discount rate)

Since a linear utility function was used in the Merkhofer and Keeney study, the outcome

of each of these attributes should be equivalent to one another.  In other words, 30 worker

deaths should be monetarily equal to $29.6 million, or approximately $1 million per

worker fatality.  But, we could also equate 30 worker fatalities to one public fatality, a

dubious equality indeed.  Also, it is troublesome that the study allows one public fatality

(non-radiological) to be equal to five public fatalities (transportation).  We believe that
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public fatalities should be approximately equal (one-to-one) regardless of the exact nature

of the fatality.  Further, one can equate a single public fatality with a cost of almost $30

million, which is significantly larger than other societal public fatality costs found in the

literature.  Based upon the consistency problems we experienced and those from much

larger projects such at that discussed by Merkhofer and Keeney, we conclude that

ensuring consistency within the decision process is desirable but not easy to achieve.

3.5 Revising Preference Information to Ensure Consistency

Although we are not alone in having constructed a formal decision making framework

that initially exhibited inconsistencies, we were able to address the issues related causes

of the inconsistencies.  If one returns to the central decision-making rule as described in

Equation 5, it is evident that any inconsistencies must be resolved via modifications to

either the equation itself or the parameters of the equation.   Specifically, we note that

three possible modifications can be made:

1. Modify the performance measure weights (as determined by the value tree)

2. Modify the functional form of the performance index equation (e.g., move to a

non-linear form as described in Equation 3)

3. Modify the disutility functions themselves (e.g., rescale lower or upper endpoints

of the disutilities, change the shape of the disutilities)

Of course we are free to explore modifications that consist of two or more of the items

above, but as we will discuss, only the last item (3) show promise in relieving the

inconsistencies that were found in our initial modeling of the decision makers preference.

3.5.1 Ensuring Consistency via Value Tree Weight Modifications

First, let us tackle the potential case of modifying the value tree performance measure

weights.  The existing measure weights (weconomics = 0.32, wdose = 0.16, waccidents = 0.16,

wsafety = 0.21, and wstakeholders = 0.15) were derived from application of AHP followed by

deliberation amongst the decision makers.  As such, the weights are representative of
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those found following the use of AHP, namely they have the characteristic that they are

within a factor of ten from one another.  This “bunching” of the weights from AHP is a

byproduct of the rating scales, which nominally range from 1 to 9.  If we construct a

hypothetical AHP example to determine the extreme range of the weights (say for just

two attributes) we would utilize an AHP matrix (A) such as:

Attribute 1 Attribute 2

Attribute 1 1 9

Attribute 2 1/9 1

Here, in the AHP matrix, we prefer Attribute 1 absolutely over Attribute 2.  To find the

weights, we need to solve the matrix equation via:  det(A - λ I) = 0, where A is the AHP

matrix above and I is the identity matrix.  From this equation, we can find that the

normalized attribute weights are 0.9 and 0.1 for Attribute 1 and Attribute 2, respectively.

Salo and Hämäläinen (1997) extended this example to the general case of an n × n matrix

(i.e., n attributes) where M is the AHP upper scale numerical value (9 in our case).  From

this work, they noted that the maximum and minimum weights from AHP are:
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where M is the upper scale value (typically 9) and n is the number of attributes.  We

utilize these two relationships on the AHP weights to determine the permissible ratio

between the maximum and minimum weights – this relationship is shown in Figure 23
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where we see for the traditional AHP scale of 1 to 9, with six attributes (n = 6), the ratio

of the largest weight to smallest weight is about 30.  Increasing the scale from 9 to a

value of 50 or 100 does increase the potential spread between the largest and smallest

weight, but the principal of AHP, Saaty, strongly recommend only using the 1 to 9 scale

primarily on the basis of homogeneity between the attributes (Saaty, 1980; Saaty, 1997).

One of the fundamental assumptions behind AHP is “one can only compare things that

are within an order of magnitude from each other” (Saaty 1997).

Figure 23.  Illustration of the largest ratio between the maximum and minimum AHP

weights as a function of both the number of overall attributes and the numerical ranking

scale used for the AHP.
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The example using two attributes implies that when using AHP (with the 1 to 9 scale)

that the resultant weights are going to be within an order of magnitude of each other.  So,

what would one do if an attribute were deemed to be 100 or 1,000 times more important

that another attribute?  It would not be useful, in this case, to rely on AHP to assign the

weights.  Instead, another preference elicitation method would be required.  But, in this

case, one would seriously have to consider dropping the less-important (with respect to

preference) attribute.  A check of the preferential independence of the two attributes may

indicate that dropping the lesser of the two attributes is a valid modeling choice.

Let us return then to our consistency problem.  We had indicated that some of the

consistency checks were off by an order of magnitude or more.  Consequently, to rectify

these situations, we would need to adjust the performance measure weight (specific to the

consistency in question) by an order of magnitude or more.  But, since the measure

weights must sum to a value of one, drastically changing one measure weight may have

unintended affects on other weights, thereby challenging the consistency checks of other

performance measures.  Also, we saw that some of the consistency checks

underestimated the expected outcome, even though the attribute’s utility function was set

to 1.0 for the specific check.  Consequently, given the current structure, maximizing the

cost disutility and allowing the flexibility to change the cost performance measure weight

to any value will never yield a reasonable cost related to a core damage event.  In theory,

the performance measure weights are intended to indicate preference on the attributes –

they are not intended to provide a mechanism for “tuning” the results to a particular value

for the performance index.  So, it turns out that attempting to adjust performance measure

weights is not a useful path forward towards rectifying the consistency check issues.

3.5.2 Ensuring Consistency via Non-Linear Weighted Disutility

Now, we turn to the second possible modification, namely that of going to a non-linear

functional form of the performance index equation.  With this particular option, it is

apparent, up front, that going to a non-linear form of the performance index would

greatly complicate the decision framework construction and resulting analysis.  And, it is
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not at all evident that a more complicated form of the decision-rule equation will solve

the consistency check issues.  For example, again if one were to have a form of the

equation that maximized the disutility for cost anytime a core damage event outcome was

realized,† we would still only have a cost in the millions of euros rather than the

(potential) hundreds of millions that could be expected.  In other words, the primary

problem we face with the sanity checks is in a lack of consistency between the

performance measure disutility scales (e.g., the uppermost outcomes).  Couple this with

the fact that very few real-world applications of formal decision theory utilize non-linear

forms of the decision-rule equation and we dissuaded from applying the second proposed

modification.  As noted by Clemen (1996) “…in extremely complicated situations with

many attributes, the additive model may be a useful rough-cut approximation.  It may

turn out that considering the interactions among attributes is not critical to the decision at

hand.”

While it is generally the case that non-linear weighted utility formulations are avoided in

practice, we would like to point out that, as part of the decision analysis, we do consider

interactions among performance measures.  But, this interaction that we will consider

consists of attribute coupling via probabilistic dependence, which in turn impacts the

expected value (an uncertainty) calculation.  In other words, the decision rule equation

given by Equation 5 is, in the end, much more complicated that it appears on the surface.

For example, the PRA is used to evaluate decision options where the possibility of an

accident is factored into the analysis – and, upon the realization of an accident, the

probabilities and outcomes of high costs, high negative stakeholder attention, high

radiological dose, and high core damage potential are all included in the overall disutility

of the decision option.  Thus, in effect we have non-linear characteristics related to the

overall decision option ranking, but this characteristic enters into the picture via

probabilities, not preferences.  Note that this is similar, but not the same, as the treatment

that Keeney and Raiffa (1993) give for their argument of “substitutes” related to attribute

                                               
†  For example, the joint cost-core damage disutility would have a value of one given an outcome of a core

damage event.
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preference.  In their discussion, they point out that the joint utility of two attributes has a

weight that is a function of both attributes preference.  If preferred outcomes of the two

attributes lead to an even higher overall utility, then the joint attribute weight is strongly

positive.  But, it is possible for the joint attribute weight to be negative (since they are

discussing non-linear utility functions), which would tend to lower the overall utility.

And, if one attribute has a high outcome while the other has a low outcome, then the

lowering of the overall utility is lessened.  Consequently, if the joint attribute weight is

negative, Keeney and Raiffa designate the two attributes as “substitutes” since if either

one of the attributes is at a high level, then the net effect is largely positive. An example

of this effect could be described by the attitude of Boston, Massachusetts, sports fans.  If

any one of the local major sports teams does well, the overall general feeling is

positive…in other words, it is not necessary that both the New England Patriots win the

Super Bowl and the Boston Red Sox win the World Series.†

3.5.3 Ensuring Consistency via “Measurable Equivalence”

Lastly, let us consider the third possible modification, that of modifying the disutility

functions themselves.  Here we are primarily concerned with making adjustments to the

disutility scales, for example, by modifying the low value (best outcome) and the high

value (worst outcome).  We have already shown (in the two previous possible

modifications) that adjusting the performance measure weights or changing the overall

performance index equation is not enough to remove some of the inconsistencies we

found via our indifference checks.  The rational behind these shortcomings is that there is

a fundamental “imbalance” in the disutility scales amongst the performance measures.

Since the weights for the performance measures are within an order of magnitude from

each other, this implies that both the lower scales for each measure and the upper scales

for each measure must be within one order of magnitude with regard to the outcome.  Let

us explain this issue via a hypothetical example.

                                               
†   The Patriots and the Red Sox are the local (to Boston) football and baseball teams, respectively.
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Assume that a decision is to be made between two options, (1) being paid for a task in

apples (fruit) or (2) being paid in euros (cash).  Since it is desirable to use utility theory to

assist in the decision process, we need a weight for apples versus euros and the utility for

both apples and euros.  Further assume that based upon an earlier decision process, the

utility of euros was already known, where u(0 €) = 0, u(5,000 €) = 0.5, and u(10,000 €) =

1.0.  Now, for the task performed, it is known that the payment in apples would be

approximately one bushel,‡ so we proceed to determine the utility of apples.  Following

this determination, we find:

u(no apples) = 0

u(1/2 bushel) = 0.5 (13)

u(1 bushel) = 1.0

Also, let us assume that we prefer cash over fruit, so wcash = 0.9 and wfruit = 0.1.  Prior to

making the payment decision, we perform a consistency check.  We select a weighted

utility value of 0.1, which then implies a certain level of indifference between apples and

euros.  Specifically, we note for the two attributes:

(cash)  0.1 = wcash · u(xcash)  = 0.9 · u(xcash)

(14)

(fruit)  0.1 = wfruit · u(xfruit)  = 0.1 · u(xfruit)

By knowing the utility functions for both euros and apples, we can determine the

equivalencies between these two attributes.  From the utilities defined in the previous

paragraph, we would find that xcash = 1,110 euros and xfruit = 1 bushel of apples.  But, it is

obvious that one bushel of apples should not be equivalent to 1,110 euros.  Instead,

visiting the grocery store will show that one bushel of apples can be purchased (at retail

prices) for approximately 50 euros.  Thus, our consistency check indicates that the

indifference between euros and apples is off by about a factor 22.  We could then ask,

                                               
‡   One bushel of apples contains approximately 100 apples and weights about 19 kilograms.
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“what is the driver behind this discrepancy?”  The answer here, as is the same for our

incident management case, is that the utility scales are not consistent.  If the maximum

outcome for the fruit attribute is one bushel of apples, the maximum outcome for the cash

attribute should be no more than an order of magnitude larger than the cash value of a

bushel of apples.  Otherwise, with inconsistent utility scales, we experience equalities

between attribute utility that simply do not fit reality.

In the end, to fix the inequalities that we saw with our initial disutilities, we utilized a

process that we call “measurable equivalence.”  Typical methods for disutility

determination include not only AHP but also “certainty equivalent” and “lottery

equivalent” (Clemen, 1996).  The certainty equivalent approach asks the decision maker

to compare a lottery of outcomes against a known, certain quantity.  But, due to biases in

comparing uncertain outcomes against certain outcomes, researchers have proposed the

lottery method whereby the decision maker compares two different lotteries.  We propose

a fourth method, that of measurable equivalence, whereby facts are used to adjust

disutilities.  For example, in the apple example above, a measurable equivalence that can

be used to determine the utility is the fact that apples cost about 50 euro per bushel.  We

can utilize this known relationship to adjust either the cost or apple disutility function

such that the consistency checks provide reasonable results.  This method is similar to the

“portable genius” approach described by Howard (1971) in that the domain constraints

should, to some extent, focus the decision problem.  Ultimately, we utilized the method

of measurable equivalence to finalize the disutility functions for the decision advisor

prototype.

3.6 Limitations in the AHP Methodology

Due to the difficulties we experienced in using AHP for the disutility determination, we

decided to collect additional preference information from our decision makers.  In a

follow-on workshop to the original AHP exercises, we elicited from our decision makers

preference information on the five performance measures.  But, in this second case, we

decomposed the scales into two intervals for some of the performance measures in order
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to obtain preference details for select regions.  For example, we chose to decompose the

cost measure into two sub-intervals rather than attempting to span nine orders of

magnitude in a single AHP elicitation.  This decomposition does increase the information

collection burden, but it does provide additional data points across the measure scale.

In order to bring the two sub-intervals into a single disutility function (in the case of the

cost performance measure), we “joined” the regions together at their end-points (or

“pivot” points).  Specifically, the upper end-point of the first region was equated to the

lower end-point of the second region. This process of joining sub-intervals via pivots

utilized the normalized AHP values (that is, prior to the transformation to the disutility

values) which are obtained from the principal AHP eigenvector (Saaty and Vargas,

2000).  Consequently, each disutility value in the first interval (from 0 to 750,000 euro)

was normalized by the ratio of the 750,000 euro AHP value of the second interval over

the 750,000 euro AHP value from the first interval.  An example of the AHP sub-interval

step for the cost performance measure is shown in Table 5.  The AHP value

normalization factor that was used is 0.59/0.048, or 12.3.

Table 5.  AHP and disutility data for the cost performance measure by joining two sub-

interval at their end-points.

Interval Cost (euro)

AHP Value

(raw)

AHP Value

(normalized) Disutility

1,000 0.45 5.53 0.00

5,000 0.36 4.40 0.21

50,000 0.15 1.83 0.67
1

750,000 0.048 0.59 0.90

750,000 0.59 0.59 0.90

10,000,000 0.27 0.27 0.96

100,000,000 0.11 0.11 0.97
2

1,000,000,000 0.032 0.032 1.00
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From the disutility values in Table 5, we can construct a disutility function for the cost

performance measure.  We show the result of this preliminary function in Figure 24.

Like the previous AHP-derived curves, this cost disutility exhibits a risk prone attitude.

But, one should notice that the cost disutility rises rapidly.  For example, the cost curve

shows a disutility of 0.5 around a cost of 20,000 euro.  The question then is this a

reasonable value for a disutility of 0.5?  One method of answering such a question is

through the use of the “certainty equivalent.”

Figure 24.  Pivot-based AHP disutility curve for the cost performance measure.
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The definition of the certainty equivalent is tied to the concepts of lotteries.  For a

performance measure X, the expected outcome of a lottery of n number of x outcomes,

each with a unique probability p, is given by

�
=

=
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i
ii xpxE

1

][ (15)

The expected utility of the lottery of performance measure X is then
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For a lottery based upon a coin toss, a so-called 50-50 lottery, the expected value of the

lottery is calculated as E[x] = (0.5 x1) + (0.5 x2), where x1 and x2 are the two outcomes of

interest, respectively.  The certainty equivalent for a lottery is the outcome of the

performance measure X, denoted by x’, where the decision maker becomes indifferent

between x’ for certain or the lottery itself.  Since preference is expressed via utilities, the

certainty equivalent may be expressed as a function of utilities (Keeney and Raiffa, 1993)
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Note that the certainty equivalent value, x’, is expressed in terms of the units for the X

measure.  For example, if X is cost, then x’ is found in terms of monetary units.  For any

measure though, the certainty equivalent may be determined once the utility is known for

that performance measure.  Further note that the literature frequently describes the

process of determining an equivalence in terms of a 50-50 lottery, but the concept is valid

for any combination of n probabilities, where the only constraint is that Σpi = 1.  Of

course the value x’ changes as the lottery probabilities are adjusted, simply due to the fact

that the expected utility of the lottery changes (as noted in Equation 16).
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To illustrate the certainty equivalent calculation, we will utilize the pivot-based cost

performance measure disutility.  We will use a 50-50 lottery for two cases, first for the

case of outcomes zero and 1 billion euro and second for the case of outcomes zero and

20,000 euro.  In the first case, 1 billion euro has a disutility of 1.0, so the certainty

equivalent value is found by

( ) ( ) euroueurouuux 000,205.0)000,000,000,1(5.0)0(5.0' 11 ==+= −− (18)

The second case is calculated via a similar equation.  The certainty equivalent result for

both cases are shown in Figure 25, where the certainty equivalent for the first case is

approximately 20,000 euro while, in the second case, the certainty equivalent is

approximately 6,000 euro.  These two values are noted by the vertical lines on the plot.

Figure 25. Certainty equivalent calculation for the pivot-based cost disutility.
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We propose to use this concept of certainty equivalent as a check on the disutility

function itself.  Using the intervals defined in Table 5, we plot, in Figure 26, the certainty

equivalent (of a 50-50 lottery) for interval 1 (costs below 750,000 euro), interval 2 (costs

above 750,000 euro), and the joined intervals (via pivots).  We also show the certainty

equivalent, as a function of cost, in the case of a “risk neutral” decision maker.  In this

figure, if the certainty equivalent is less than the risk neutral curve at that same cost, then

the associated disutility exhibits risk prone behavior.  From the relationships described in

Figure 26, we point out an interesting observation – namely that the pivot approach

captures the certainty equivalent behavior only for the lowest interval.  The pivot

approach does a poor job of representing the certainty equivalent for larger cost

outcomes.  For example, the pivot approach indicates that the certainty equivalent for a

50-50 lottery (where the maximum loss is one billion euro) is only 20,000 euro (as we

also illustrated in Figure 25).

Figure 26. Certainty equivalent as a function of cost from the AHP elicitation.
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A certainty equivalent of 20,000 euro on a one billion euro, 50-50 lottery is far too small

and indicates that the decision maker is far too risk prone, or to be more precise, that the

disutility as indicated by AHP is much to risk prone.  The fact that the pivot approach

suggested by Saaty (Saaty and Vargas, 2000) does not preserve the certainty equivalent

embodied in the performance measure upper intervals indicates it probably should not be

utilized for the elicitation of disutility when the potential outcomes span a wide range.

The AHP pivot approach for disutility is not valid if one desires to maintain the certainty

equivalent toward the upper end of the performance measure.  The undesired features of

the AHP pivot method include:

1. The pivot-based disutility implies that the decision maker is very risk prone.  The

disutility is not near the “risk neutral” curve for much of the performance measure

range and may differ by orders of magnitude from the risk neutral curve.

2. The pivot-based disutility preserves the certainty equivalent only for the low cost

regions (e.g., less than one million euro).  In higher regions, the certainty

equivalent is suspect.  For example, the AHP results suggest that the decision

maker would only pay 20,000 euro to avoid a “50-50” lottery where the two

outcomes are either lose nothing or lose 1 billion euro.  In reality, the decision

makers would pay much more than 20,000 euro to avoid large losses of this type.

From the determination of the certainty equivalent for the pivot case, it became apparent

that the disutility via AHP was driven, to a large extent, by the initial cost intervals.

Consequently, we became concerned that even for a “non-pivot” AHP application, that

the resulting disutility function may be driven by information specific to the initial

portion performance measure.  To check this, we then evaluated cost preference using

AHP, where the span was from 100,000 to 100 million euro.  The data that we had

collected from our decision makers for this interval is shown in Table 6.
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Table 6.  AHP and disutility data for the cost performance for the interval of 100,000 to

100,000,000 euro.

Cost (euro) AHP Matrix

AHP Value

(raw)

AHP Value

(normalized) Disutility

100,000 1 4 6 8 0.876 0.567 0.00

1,000,000 1/4 1 6 8 0.448 0.290 0.52

10,000,000 1/6 1/6 1 8 0.171 0.111 0.85

100,000,000 1/8 1/8 1/8 1 0.051 0.033 1.00

To test our hypothesis that AHP results are driven by the initial scale region, we adjusted

the AHP matrix concerning preference on losses of 100,000 euro versus losses of 1

million euro.†  We modified the “4” value in region I of the AHP matrix (Table 6), first to

a value of “1,” where we called this case “no impact” to indicate that the decision maker

is indifferent between costs of 100,000 and 1,000,000 euro.  Second, we modified the

same value in region I of the matrix to a value of “2,” where we called this case “minor

impact.”  The results of these AHP calculation are shown in Figure 27, where we plot the

corresponding disutility function for the cases described above.  In addition to the AHP-

derived cases, we plot the disutility that would be realized for a risk neutral decision

maker.

As we see in Figure 27, the disutility curve changes significantly depending on the value

in region I of the matrix.  This degree of sensitivity indicates that the AHP process is

driven by the initial regions specified for the problem domain.  Since the number and

magnitude of these initial regions are somewhat arbitrary (for example, instead of having

a single interval from 100,000 to 1,000,000 euro, we could have five regions within this

                                               
†  Examples of these losses at a nuclear power plant is a shutdown of approximately one day or less.
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span), it appears that the AHP-derived disutility is somewhat arbitrary.  In other words, it

is possible to obtain dramatically different functional forms for disutility depending on

the nuances of setting up the AHP scales.  Unfortunately, this feature could be used to

drive the disutility functional forms to almost any desired outcome.  For example, if one

evaluates the “no impact” curve shown in Figure 27, one would notice that the initial

portion of this curve demonstrates “risk averse” behavior (below one million euro) while

upper portions of the curve are “risk prone.”  So, the decision maker preference (as

indicated by the AHP curve) may vary depending on the AHP implementation, which

should not be the case in practice.  The decision maker preference on a performance

measure outcome should be independent (in theory) of the measure scale quantities used

to derive the disutility.  Consequently, it appears that using AHP to determine disutility

violates Utility Axiom 2 (equivalence).

Figure 27.  Sensitivity of the disutility curve for the cost performance to changes in one

region of the AHP matrix.
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As a final investigation to the AHP-to-disutility determination, we decided to see if there

was any correlation between the performance measure scale range (as measured by the

orders of magnitude between the low and upper end-points) and the inconsistency metric

of the AHP matrix.  For this analysis, we utilized the “consistency index” formulation

proposed by Saaty (1980), which is defined as:

1
max

−
−=

n

n
CI

λ
(19)

where λmax is the largest eigenvalue from the AHP and n is the number of performance

measure scale points.

We looked at the potential for AHP inconsistency correlation for both the cost and

radiological dose measures.  The results of the cost analysis is shown in Figure 28 while

that for the radiological dose is shown in Figure 29.  We can clearly see that as the range

increases (i.e., as the performance measure scale spans larger values), the AHP

inconsistency index increases.  Generally, CI values above 0.10 to 0.15 are considered to

be “inconsistent” and would provide motivation for reconsideration of the AHP matrix.

This correlation between the AHP scale and the inconsistency is further evidence for the

need to utilize an alternative method (other than AHP) for disutilities.

While our original motivation behind using AHP for disutilities was its ease of use and

increasing acceptance in the realm of decision making, we also desire to have a method

that is robust, believable, and passes our “sanity” checks over the range of consequences

of concern.  For our application though, where disutility spans several orders of

magnitude, we have become critical of using AHP as a disutility-generating mechanism.

Consequently, for the disutilities that are to be used in the decision advisor prototype, we

chose not to use AHP.
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Figure 28.  The AHP consistency index (for four decision makers) as a function of the

cost magnitude (as measured by the scale orders of magnitude).

Figure 29. The AHP consistency index (for four decision makers) as a function of the

radiological dose magnitude (as measured by scale orders of magnitude).
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3.7 Finalizing the Disutility Functions

In order to modify the disutility scales for the incident management framework, we must

consider two guiding principles of the adjustment.  First, we need to ensure that the

maximum outcome (the worst case) for each performance measure has, within reason,

about the same level of “consequence.”  This first principle is employed to ensure that

like outcomes are used up-front in the preference elicitation process.  Second, where

possible, the performance measure indifference points should be constrained by actual

measurable equalities.  Here, we are defining a “measurable equality” as two

performance measure outcomes that, if put side-by-side in reality, would be equivalent.

Thus, this second principle is used to bring real data into the decision process while

simultaneously helping to reduce the subjectivity present when utilizing preference

information.  As an example of the types of measurable equalities one might utilize in the

context of incident management, we tabulated several for various performance measures

in Table 7.

We should point out that not every decision analysis domain has measurable equalities.

For example, the frequently used textbook problem of “buying a car” has attributes such

as fuel economy, cost, and style as fundamental to the purchase of a car.  But, in this

case, there would not be natural equivalencies between any two of the attributes.  So, in

one respect, we are fortunate to have several measurable equalities for the problem of

incident management, but we still need to resolve the issue of the extreme range in

disutility.
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Table 7.  Examples of measurable equalities between the incident management

performance measures.

Performance Measures Equivalence Conditions

Cost and

Industrial Accidents

The value of life cost associated with a worker fatality is

approximately 2 million euros

Industrial Accidents and

Radiological Dose

A fatality is realized upon exposure to a dose of

approximately 7 Sv

Cost and

Core Damage

An estimated cost associated with an accident resulting in

partial core damage (but no vessel breach) is

approximately 750 million euros

Cost and

External Attention

Regulatory intervention that forces the plant to suspend

operations costs 333,000 euros per 24 hour period

3.7.1 Determining the Upper Endpoint for the Disutility

At this point, we can revisit each of the attributes in order to force the disutility scales to

be consistent within the value tree framework, including weights, described in Figure 15.

For each disutility, the initial end point represents the best outcome and has value of zero.

This outcome is defined by the lack of any negative impact for the attribute (no costs, no

dose, no external attention, etc.).  The other end of the range for each disutility is the

worst outcome and has a value of one.  This outcome is defined by the maximal situation

that could occur within the context of incident management.  But, it is this end point that

must be made consistent between the five attributes.

In order to ensure consistency, we must first find the attribute outcome, of the five, that

currently represents the worst outcome.  To determine this “anchor,” we show the scales
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that were used for the initial disutility elicitation in Table 8.  Then, one must focus on the

last row in the table, specifically the information pertaining to disutility equal to one.

Within this row, it is plausible to assume that the worst outcome of all five “worst”

outcomes is that of core damage.  Consequently, we must recast the other four

performance measures (cost, industrial accidents, radiological dose, and external

attention) such that they are comparable (within ratios of the attribute weights).  But,

since we are reconstituting the disutility scales, we are also going to allow constraints

based upon measurable equalities (for example, see Table 7).

As we can see in Table 8, inconsistencies are likely to exist due to the discrepancy in the

performance measure scales.  For example, the upper end of the industrial accidents

disutility scale is a fatality, but for the cost scale we see a maximum outcome of hundreds

of millions of euros.  Consequently, it is evident that we need to adjust the disutility

scales, either by increasing the performance measures that are too low or by decreasing

the ones that are high.  Once might question the need to have plant safety end in core

damage if the focus is on incident management.  But, this outcome was preserved due to

the desire expressed by the decision maker.

Table 8.  The scales used in the initial determination of performance measure disutility.

Range Cost
(millions of

euros)

Industrial
Accidents

Radiological
Dose
(Sv)

Core
Damage

External
Attention

Best (u = 0) < 14.3 No injury < 0.002 None None

14.3 to 114 Minor injury 0.002 to 0.01 Report event

0.01 to 0.05 Inspection

114 to 571 Severe injury 0.05 to 2 Regulatory
intervention

Worst (u = 1) > 571 One fatality 2 Core
damage

Long
shutdown
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For the five performance measures that we require, we need to determine appropriate

“mappings” that can translate disutility information from one measure into another.

These measurable equalities, or mappings, should consist of observable or readily

available data, preferably collected from actual experience.  Once these measurable

equalities are identified, we will use them to transform disutility for the five performance

measure functions, where we must account for the difference in performance weights that

were identified as part of the value tree determination (see Figure 15).  This scaling

process is similar to the consistency checks that were performed earlier for the AHP-

derived disutilities where we will force equivalent outcomes to have equal weighted PI

(Equation 5).  The general steps for the disutility application of measurable equivalence

are:

1. Denote appropriate measurable equivalence for the performance measures.

2. Determine which performance measure has the largest “outcome.”

3. Set the upper-bound of the remaining performance measures based upon Step 2.

4. Determine, perhaps by using lottery equivalence techniques, the disutility

function for one of the performance measures, preferably for the measure that has

the largest number of equivalencies identified in Step 1.

5. Determine the remaining disutility functions by equating outcomes via the

weighted PI, starting with the function identified in Step 4.

6. Deliberate in order to complete the disutility for regions or points not assigned by

use of the previous five steps.

We now demonstrate these steps though the application for our five performance

measures.  First, we need to identify applicable measurable equivalencies.  While we

noted a few example equalities earlier in Table 7, we determined a total of ten that were

of use.  This final set of equalities is listed in Table 9 along with their references.  We

also display a plot of select equalities in Figure 30.
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Table 9.  Measurable equalities that were utilized to determine the final disutility

functions for the five performance measures.

Performance Measure

Cost Dose Attention

Core

Damage Accidents

Equality Reference

● ● 222,000 euro = 1 Sv U.S. NRC, 1997

● ● 7 Sv = 1 Fatality Cember, 1992

● ● 1 Fatality = 2E6 euro Table 4

● ● 1 Injury = 2E5 euro Burke, Aldrich, and

Rasmussen, 1984

● ● Core damage < 10

fatalities

Burke, Aldrich, and

Rasmussen, 1984

● ● Core damage = long

shutdown

Burke, Aldrich, and

Rasmussen, 1984

● ● Core damage = 7.5E8

euro

Burke, Aldrich, and

Rasmussen, 1984

● ● Regulatory report =

3E5 euro

Inferred from our

decision maker as a

likely outcome

● ● Fatality = inspection Inferred from our

decision maker as a

likely outcome

● ● 1 day outage = 3.3E5

euro

Estimated by our

decision maker for

actual plant

operation losses
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Figure 30.  Measurable equivalence factors used to develop the final disutility functions.

The arrows indicate the “direction” of influence from one measure to another (e.g.,

receiving a dose of 7 Sv induces a fatality).

Previously, we discussed the fact that the performance measure of core damage embodies

our largest “outcome,” namely that of a core damage event.  While we are not focusing

on severe events where radioactive material is released to the environment, minor core

damage events are of interest.  These types of events fall close to the “category II”

accidents evaluated by Burke, Aldrich, and Rasmussen (1984), which they classify as

“core damage events without pressure vessel melt-through, no significant release of

radioactive material, and no offsite public health impacts or property damage.”
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Nonetheless, these events constitute our bounding event, both in consequence and in

(low) probability.

We now need to scale the upper bound for each of the four remaining performance

measure disutilities.  This scaling is accomplished by utilizing:  (a) an applicable

measurable equivalence and (b) the ratio of the performance measure weights.  Let us

demonstrate the technique to determine the cost disutility upper bound.

For the cost disutility, we have an equality that indicates a core damage event is worth

(approximately) 750 million euro.  Also, the performance measure weight for cost is

0.32, while it is 0.21 for core damage.  Thus, the equivalent core damage to maximum

cost is found by returning to the PI equation and equating these two measures:

)(21.0)(32.0 max DamageCoreuCostu = (20)

Since the disutility for the maximum event is defined to be 1.0, we know that u(Core

Damage) = 1.  Even though the actual cost of a core damage event is around 750 million

euro, this value can not be the maximum cost for the disutility due to the fact that the cost

weight is 50% higher than the core damage weight.  But, we can find the maximum cost

(which has a disutility of 1.0) from the cost-to-core damage equality, or:
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where uCD
-1(1.0) is the inverse disutility given a maximum value of 1.0 (which is just a

core damage outcome) and Cost/Core Damage is the actual core damage cost per event

(750 million euro).  This calculation yields a maximum cost of 500 million euro.  Note

that this transformation is performed at this point to determine the maximum scale value

for cost.  We do not perform a linear transformation of the entire cost function based

upon the relationship described in Equation 21.  Instead, we use the individual

measurable equivalence relationship to determine specific points of indifference on a
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particular disutility curve.  Then, once enough points are described, we may fill in the

remaining points via deliberation or, in the case of cardinal-scale based disutilities, may

fit the points to an appropriate disutility function.  Note that in some ordinal-scaled based

cases that each category could be determined via the measurable equivalence technique if

enough relationships were defined.

In order to determine the remaining disutility points, we need to have information

concerning the cost disutility function.  In order to determine the cost disutility, we can

not rely on AHP, so we utilized a worksheet based upon lottery equivalencies.  We asked

our decision makers to compare two lotteries, each with different economic losses.  For

example, one of the questions was posed as:

Lottery A   = 0.5 * (100,000,000 euro cost)  +  0.5 (no cost)

Lottery B   = p * (1,000,000,000 euro) + (1 - p) * (no cost)

What value of p makes these two lotteries indifferent?   p = _____?

Once the decision maker specifies their value of p, in effect they have given us cost

disutility values due to the application of Coherence Axiom 6, that of preference.  For

example, in the case above, we are allowed to write:

)1()100(5.0 eurobillionupeuromillionu ××××==== (22)

where we note that u(no cost) = 0.  But, since u(1 billion euro) = 1, we have:

peuromillionu 2)100( ==== (23)

In this case, our decision makers specified that p was equivalent to 5.5E-3, so we now

have another point on our cost disutility curve, namely u(100 million euro) = 1.1E-2.  In

total, we elicited four points on the disutility curve, ranging from costs of 100,000 euro
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up to 100 million euro.  Joined with these four values are the two additional points, the

lower (u = 0) and upper (u = 1), for a total of six disutility points.  This set of cost

disutility is shown in Table 10.

Table 10.  Cost disutility points based upon lottery comparisons.

Cost Outcome (euro) Disutility

0 0.0

100,000 4.5E-6

1,000,000 3.0E-5

10,000,000 1.7E-3

100,000,000 1.1E-2

500,000,000 1.0

We then fit these points to a few disutility function types (logarithmic, exponential,

polynomial).  For the cost disutility points, we found that a 3rd-order polynomial fit the

points well, with only an overestimation of the disutility toward the low end of the scale.

This plot is shown in Figure 31.  Further deliberation by the decision makers could

provided adjustments to this disutility cost curve, but we assume that it provides an

adequate representation of the decision maker preferences.

Now that we have the cost disutility function, we can determine the dose, industrial

accidents, and external attention upper endpoints since we also have measurable

equivalence for each.  The other three maximums are found like before.  For dose:
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Figure 31.  Final disutility curve for the cost performance measure that is used in the

incident management prototype (log-log scale).

where uCost
-1(0.16/0.32) is the inverse disutility for cost and 1 Sv/222,000 euro is

determined by knowing the measurable equality shown in Table 9.   From our function

for cost, uCost
-1(0.16/0.32) = uCost

-1(0.5) = 427 million euro.  Thus, the maximum value on

the dose disutility scale is:
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Again, note that this we have now only described a single point on the disutility dose

curve.  We do not apply this transformation to the entire curve, but instead describe as

many points as possible using the measurable equivalence technique.  But first, let us

determine the maximum values for the remaining disutility curves.

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09

Cost, euro

D
is

u
ti

lit
y

Cost Disutility Points
Polynomial Fit



122

For the industrial accidents disutility, we find the maximum scale value as:

(((( )))) fatalities
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While the maximum scale for accidents embodies an extremely large number of fatalities,

we note that the scale for this performance measure is a ordinal-based one.

Consequently, we are going to describe the largest region on the scale as any situation

that involves ten or more fatalities.  Thus, this region (> 10 fatalities) will have a

disutility of one, which bounds the case of 200 (or more) fatalities.

For the external attention disutility, we find the maximum scale value as:
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since uCost
-1(0.15/0.32) = 419 million euro.  Thus, the maximum regulatory attention has

an outcome of a 3.5 year shutdown.  This maximum, and the maximums for all five

performance measures, are listed in Table 11.

Table 11.  Performance measures weights and maximum outcomes.

Performance Measure Weight Maximum Outcome for Disutility

Cost 0.32 500 million euro

Radiological Dose 0.16 2,000 Sv

Industrial Accidents 0.16 >10 fatalities

Core Damage 0.21 Core Damage

External Attention 0.15 3.5 year shutdown
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3.7.2 Filling in the Disutility Functions via Measurable Equivalence

The remaining measurable equivalencies are used to determine additional points on the

radiological dose, industrial accidents, and external attention disutilities.  For example,

we have an equality between a lethal dose (7 Sv) and the cost of a fatality (2,000,000

euro).  Based upon this, we can determine another point directly on the dose disutility

curve, since:

(((( ))))eurouSvu 000,000,232.0)7(16.0 ××××====×××× (28)

The point we are looking for is the disutility at the 7 Sv level, or:

(((( ))))eurouSvu 000,000,2
16.0

32.0
)7( ××××�

�

�
�
�

�==== (29)

But, from the cost disutility, we find u(2,000,000 euro) = 3.9E-4.  Thus, u(7 Sv) = 7.8E-4.

Also, we have the relationship between 1 Sv and 222,000 euro, so u(1 Sv) = 8.8E-5 since

u(222,000 euro) = 4.4E-5.  We now have four points on the dose disutility curve.  Again,

we fit the points (shown in Table 12) to several curves, where the closest fit was found to

be a 2nd-order polynomial.  The radiological dose disutility curve is shown in Figure 32.

Table 12.  Dose disutility points based upon measurable equivalence.

Dose Outcome (Sv) Disutility

0 0.0

1 8.8E-5

7 7.8E-4

2,000 1.0
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Figure 32.  Final disutility curve for the radiological dose performance measure that is

used in the incident management prototype (log-log scale).

Now, we can determine points for the industrial accident disutility curve.  We know that

there is equivalence between a major injury and a cost of 200,000 euro.  From this, we

can determine:

(((( ))))eurouinjurymajoru 000,20032.0)(16.0 ××××====×××× (30)

Thus, we can now find the disutility for a major injury, or:
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We have the relationship between a fatality and a 7 Sv dose, so u(fatality) = 7.8E-4 since

u(7 Sv dose) = 7.8E-4 and the dose and accident weights are the same.   As an extension

to the single fatality category, we also utilize an interval of up to 10 fatalities, were we

assume that a cost associated with this outcome would be approximately times the single

fatality case.  Thus, u(2 to 10 fatalities) = 6.6E-3 since u(20,000,000 euro) = 3.3E-3.

The only remaining point on the industrial accident disutility curve is that for the case of

a minor injury.  We did not have an identified equivalence for this outcome.

Consequently, we assumed that a minor injury was approximately equivalent to 20,000

euro.  Thus, u(minor injury) = 4.0E-6 since u(20,000 euro) = 2.0E-6.

We now have the points (shown in Table 13) required to determine the industrial accident

disutility function.  The industrial accident disutility function is shown in Figure 33.

Table 13.  Industrial accident disutility points based upon measurable equivalence.

Accident Outcome Disutility

None 0.0

Minor injury 4.0E-6

Major injury 8.0E-5

Single fatality 7.8E-4

2 to 10 fatalities 6.6E-3

> 10 fatalities 1.0
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Figure 33.  Final disutility curve for the industrial accident performance measure that is

used in the incident management prototype.

Lastly, we can determine points for the external attention disutility curve.  We know that

there is equivalence between a report and a cost of 333,000 euro.  From this, we can

determine:

(((( ))))euroureportu 000,33332.0)(15.0 ××××====×××× (32)

Thus, we can now find the disutility for a report to the regulator, or:
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Other equivalencies that we utilized for the external attention disutility points include the

assumption that an inspection equates to an economic burden of 2.6 million euro.  Also,

we assumed that the impact from regulatory intervention was between that of an

inspection and a one-year shutdown.  From these assumptions, we can calculate the

points (shown in Table 14) required to determine the external attention disutility function.

The external attention disutility function is shown in Figure 34.

Table 14.  External attention disutility points based upon measurable equivalence.

Attention Outcome Disutility

None 0.0

Report 1.4E-4

Inspection 1.1E-3

Regulatory intervention 4.6E-3

Shutdown 1 year 1.9E-2

Shutdown 3.5 years 1.0
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Figure 34.  Final disutility curve for the external attention performance measure that is

used in the incident management prototype.

The one remaining disutility curve is that for plant safety.  But, since there are only two

outcomes for this performance measure, either core damage or not, the disutility function

is straightforward.  This function is shown in Figure 35.

The process of measurable equivalence relies on a robust set of performance measure

weights.  As discussed in Section 3.3.3, we used AHP to derive the performance weights.

We believe that AHP is suitable for this application since the performance measures are

“within an order of magnitude” from each other and the performance measures are single

entities (e.g., cost versus dose), unlike the scales that we saw for disutility.  Thus, we will

not have the problem of identifying intervals within the performance measure.  Instead,

the AHP application for performance measure weights is a one-to-one comparison of

measures (within the context of incident management).
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Figure 35.  Final disutility curve for the plant safety performance measure that is used in

the incident management prototype.

3.7.3 Consistency Checks of the Disutility Functions

Once the disutilities were determined via the measurable equivalence technique, we still

need to validate the curves by performing consistency checks and determining the

certainty equivalent.  First, let us look at the consistency (or sanity) checks between the

performance measures.  We plot the weighted PI comparisons for each of the

performance measures in Figure 36.  Evaluating this figure, we see that the consistency

between performance measures is quite good.  For example, we see that a fatality is equal

to approximately 2 million euro, which is also equal to a dose of about 7 Sv.  We should

not be surprised at this consistency since equalities between performance measures are

used to determine that disutilities.  A list of equality comparisons is also provided in

Table 15 which contrasts the disutility results obtained by way of AHP (see Figure 22)

and that by measurable equivalence.  In every case, the measurable equivalence results

are superior to those obtained via AHP.
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Figure 36.  Consistency checks, plotted as a function of cost, for the performance

measures when using the measurable equivalence method.

Table 15.  Example consistency check comparison between AHP-derived and

measurable equivalence-derived disutilities.

Consistency Check Original AHP Results Measurable Equivalence Results

Fatality cost 10 million euro 2 million euro

Lethal radiological dose 0.2 Sv 7 Sv

Major injury cost 3 million euro 200,000 euro

Core damage cost 15 million euro 460 million euro

Regulator inspection cost 3 million euro 2.6 million euro
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3.8 Summary

We have now outlined the decision modeling for the incident management prototype.  It

is the goal of the incident advisor prototype to select a preferential decision alternative

from the list of potential options and provide a technical justification for the basis of the

decision.  The primary focus of the decision model utilizes the structure drawn from

influence diagrams.   Within this decision model, we identified of six major parts:

- Decision alternatives – these include the options specific to the incident.

- Incident specific elements – these include the possibility for repair, the type of

failure mechanisms present, and other unique features related to the incident.

- Boundary conditions – these include the plant state and time until the next outage.

- Plant upsets – these include initiators such as transients/leaks that lead to

complications.

- Plant response – these include the plant system response to any upset conditions.

- Outcomes – these include the outcomes of interest to the decision maker.

Further, we selected an additive version of the multi-attribute PI for use in ordering

decision options.  The form of the PI was found to be:

rsstakeholdesafetyaccidentsdoseeconomics

rsstakeholdesafety

accidentsdoseeconomics

PIPIPIPIPI

rsstakeholdeuwsafetyuw

accuwdoseuweconomicsuwPI

++++=

++
++=
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.)()()(

(34)

Since we utilize disutilities, we seek to minimize the PI for the selection of a decision.

As noted in the PI equation, we identified (with our decision makers) a total of five

performance measures and their associated weights.
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Note that the PI shown is only a point estimate.  This value is only used to give the user a

“feel” for the decision alternative outcomes.  For decision making, one must rely on the

expected value of the PI.  Consequently, the prototype performs Monte Carlo sampling

on the input variables to PI as part of the expectation calculation.  But, once the PIs are

known for the decisions, we rely on the decision rule to select a preferential decision.  In

our case, we use disutility functions, which implies that we desire to minimize negative

outcomes.  Thus, decisionS with low PI are preferred, or:

)][min()1( iPIEDecision ====      (35)

where Decision(1) is a the preferred decision alternative and E[PI]i is expected value of

the PI for the i’th decision alternative.

We used AHP to determine the value tree performance measure weights.  When we use

AHP to determine the value tree weights, we are comparing one entity (the worth of cost)

against another entity (the worth of worker safety).  These value tree measures are within

an order of magnitude from one another (one is not 100 or 1,000 times more important

than the other in the context of incident management).  Further, they do not have arbitrary

outcomes (for example, on the cost measure, the focus is “cost” as an impact, not on any

one particular value for cost).   These conditions on the weights are consistent with those

suggested by the developer of AHP (Saaty, 1980; Saaty, 1997).

Following the performance measure weight determination, we proceeded to determine

the disutility functions for each performance measures.  We initially relied upon AHP to

derive the disutility functions.  But, we found several limitations in the use of AHP for

disutility elicitation:

1. AHP yields disutilities that imply the decision makers are very risk prone.

2. AHP preserves the certainty equivalent only for the low scale regions (e.g., zero

to one million euro).  In higher regions, the certainty equivalent is suspect.  For
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example, the AHP results suggest that the decision maker would only be willing

to pay 20,000 euro to avoid a “50-50” lottery (say a flip of a coin) where the two

outcomes are either lose nothing or lose 1 billion euro.  In reality, the decision

makers would be willing to pay much more than 20,000 euro to avoid large losses

of this type.

3. AHP disutility curves are extremely sensitive to small changes in the initial scale

regions.  In other words, it is possible to obtain dramatically different disutility

functions depending on the nuances of setting up the AHP scales.

4. The sanity checks performed on the AHP results showed several inconsistencies.

For example, the AHP application indicated that a lethal dose should be

approximately 0.2 Sv, when in fact it is approximately 7 Sv.

If we return to the PI equation, it is evident that any inconsistencies must be resolved via

modifications to either the equation itself or the parameters of the equation.   Specifically,

we indicated that three possible changes could be made:

1. Modify the performance measure weights

2. Modify the functional form of the performance index equation (e.g., move to a

non-linear form)

3. Modify the disutility functions themselves

Only the last item (3) show promise in relieving the inconsistencies that were found in

our modeling of the disutilities and performance measure weights.  From that notion, we

developed an approach called “measurable equivalence” in order to construct the required

disutility functions.  This approach allows us to ensure that the maximum outcome (the

worst case) for each performance measure has about the same level of “consequence.”

Further, we utilize performance measure indifference points in order to constrain the

disutility function, where the constraint is by actual measurable equalities.  This second

feature is used to bring real data into the decision process while simultaneously helping to
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reduce the subjectivity present when utilizing preference information.  In order to

transpose equivalencies from one performance measure to another, we needed to have at

least one disutility function fully specified.  We chose to determine the cost disutility,

where we determined a set of points on this function by way of lottery equivalence

questions poised to our decision makers.  We then proceeded to determine the remaining

disutility functions by applying the measurable equivalence approach, which calculates

disutility points via the equivalence weights and disutilities.  The last step in this process

is deliberation with the decision makers where adjustments to the disutility functions are

considered.

The decision model embodied in the prototype is a generalized influence diagram.  Other

analysis modules support the main decision model, including economic impacts, risk

analysis, and worker safety.  Interacting with these modules is a knowledge base that

supports the generation of an incident-specific decision model.  But, once the decision

model is constructed, we still need to analyze the model.  It is the focus of the next

section to outline the subsequent analysis of the decision model.
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" The only law is that there is no law." – John Archibald Wheeler

4 Analysis Heuristics for Incident Decision Making

It is the goal of the incident advisor prototype to select a preferential decision alternative

from the spectrum of available options and provide technical justification for the basis of

the decision.  In this section, we outline the heuristics used to analyze the decision model

that was outlined in the previous section.  For the analysis discussion, we separate the

focus into three subsections, (1) treatment of uncertainty in the decision process, (2)

treatment of deterministic aspects of the analysis, and (3) treatment of aleatory aspects of

the analysis.

As indicated earlier, the general focus for modeling in the incident management

framework is through the use of influence diagrams and related models. While the

influence diagrams allow for a depiction of the “big picture” of the decision problem, one

still needs to have rules to solve the model in order to determine preferential decision

alternatives.  As we will discuss, potential analysis solution approaches are available via

decision trees, Markov models, or event simulation.

Incident management begins with the realization that an incident has occurred that

requires attention.  From the incident impact point, one represents its implications via a

model like the influence diagram.  Using supporting modules such as the value tree,

disutilities, the PRA, and economic impacts, the decision model will be solved to provide

decision advice.  This general framework for the incident decision making is shown in

Figure 37, where we single out simulation as the analysis method.
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Figure 37. Overview of the decision analysis process where simulation is used to solve

the influence diagram decision model.
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4.1 Treatment of Uncertainty in the Decision Process

The analysis of the incident management decision model involves the determination of

preferential decisions based upon expected disutility.  The expected disutility for our

prototype has been defined as a function of five performance measures, as indicated in

the performance index for one decision alternative:
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In order for us to determine the expected value of this equation, we must integrate over

the uncertainties present in the performance measures and associated weights for a

decision alternative:
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where i indicates the performance measure; wi is the weight of the measure; ui is the

disutility for the measure; π( ) is the epistemic uncertainty over the decision analysis

parameters and models; x is the decision analysis parameters and models (which, in

general, is a vector of factors for each decision alternative and performance measure);

and y is the boundary conditions of the problem (i.e., the evidence or the facts).  Since we

are dealing with disutilities for the prototype system, we seek to have decision options

with low E[PI].  It is evident from Equation 37 that treatment of uncertainty is not only

critical but also required for determination of the decision rule based upon expected

values.  While point estimate calculations may be useful in a qualitative fashion, they are

not supported in the literature as the basis for decision making.  Consequently, we discuss

the relevant aspects of the uncertainty analysis prior to presenting details of the

supporting (e.g., PRA, economics) analysis.
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4.1.1 Uncertainty Concepts

Our decision framework represents what the decision makers think (via decision options,

chance events, and related outcomes) and how they feel (via preferences) about the

reality behind a specific incident.  As such, this framework and its attendant models

embodies our “model of the world” (Winkler, 1972; Apostolakis, 1995).  Within our

model of the world, there are two basic types of reality abstractions, aleatory and

deterministic.  While most individuals are familiar with the later, let us discuss both since

they are very relevant to our overall decision framework.

Aleatory models represent randomness (or a stochastic process) in an outcome of interest.

For example, flipping a coin is an aleatory process and is frequently modeled by using a

binomial distribution to characterize the number of heads (or tails) that we see for a given

number of flips.  Here, the random, but observable, quantity is the number of heads (or

tails), where the key here is observable outcomes.  Since "probabilities" are not

observable quantities, we do not have an aleatory model directly for probabilities.

Instead, we rely on models (such as a binomial) to estimate probabilities for certain

outcomes (e.g., two heads out of three tosses of the coin).

In the PRA, we utilize numerous aleatory models, generally to represent component

failures and, to a lesser degree, operator actions.  When modeling component failures, we

estimate failure probabilities by utilizing observable such as time to failure (for a Poisson

type failure) or the number of failures (for a binomial type failure).  Here, the random,

observable parameters are time or number of failures.

If time is the observable quantity of interest (specifically, the time until a failure), we can

not say for certain how long this time will be for any one component.  Consequently, the

time to failure exhibits stochastic behavior.  In most reliability modeling, this stochastic

behavior is represented using a Poisson model.  Further, a “rate of failure” is typically

estimated for this process, but this rate is not a measurable quantity (it may be inferred
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though).  If we assume that this failure rate is constant, then we can utilize the Poisson

model to estimate a failure probability via the equation:  probability = 1 - EXP(- λ T),

where λ is the constant failure rate and T is the time period of interest.  One may ask why

should we be concerned with having an observable quantity up front (e.g., time to failure)

when we still end with an equation in terms of a probability.  The reason for this

distinction is that we could evaluate the model in two ways – we could have probability

as the end metric or time as the end metric.  For example, we could structure a reliability

model such that the result would be expressed as a "mean time to failure." But

traditionally, reliability models are generally used in terms of probabilities.

So, the equation P = 1 - EXP(- λ T) is a model representing the stochastic nature of our

modeling situation.  In other words, the equation is an aleatory model.

A deterministic model is quite different than an aleatory model.  This model type

represents situations where the observable quantity will be known (not unknown as in the

aleatory case) given a certain set of parameter values.  For example, the equation E = mc2

is a deterministic model.  Here, if we know the mass m and the speed of light c we

presume to know the resultant energy.  Now, we may not know the energy precisely, and

in fact we will know it up to the uncertainty in the model parameters (m and c), but what

we can predict is that the energy will not be stochastic like for the case of time to failure

for a component.  Another example of a deterministic model is for the situation shown in

Figure 38.  If we wanted to model block movement down an incline, we would need to

know at what time the block will pass point A after it passes point B (assume it is already

in motion at point B so we do not have to worry about the initial movement).  One might

question why do we not ask, in our model, for the velocity of the block at point B.  If we

know the velocity and we know the distance between A and B, we can calculate the time.

But, velocity is not an observable quantity.  Observable quantities in this case are the

block position and time.  From these two quantities, we can obtain the velocity since we

know that velocity = ∂x/∂t.  But, this equation is deterministic, not aleatory – there are no

probabilities involved.
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Figure 38.  An example from physics of a deterministic model.

Each of the two model types (aleatory and deterministic) has parameters that may have

uncertainty.  Consequently, we introduce the notion of epistemic uncertainty.  Epistemic

uncertainty represents how accurate our state of knowledge is about the model, regardless

of the type of model (Eerola, 1994).  Within this uncertainty we include the

impreciseness on the model parameters (i.e., parametric uncertainty), issues on the model

itself (i.e., modeling uncertainty), errors during quantification, etc.  While the parametric

uncertainty is generally the one type of epistemic uncertainty that does get evaluated (if

any), it is possible that other uncertainties are more important.  As noted by Ang and

Tang (1975), “the uncertainties associated with such predictions or model error may be

much more significant than those associated with the inherent variabilities.”

If we are dealing with an aleatory model [e.g., P = 1 - EXP(- λ T)] or a deterministic

model (e.g., V = ∂x/∂t) and if any parameter of these models is uncertain, then the model

has epistemic uncertainty.  Stated another way, if the inputs to a model have epistemic

uncertainty, the output of the model has epistemic uncertainty.  Back to our two models,

if the failure rate λ is uncertain (which it always is), then our probability P is uncertain

and if the block position x is uncertain (which it always is), then our velocity V is

Point A

Point B
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uncertain.  Since most, if not all, of our engineering models rely on observable quantities,

our models have epistemic uncertainty since:

1.  We can not be absolutely precise when we measure parameters like position and time.

2.  We can not have an infinite amount of measurements on the observable quantities.

3.  The observable quantities exhibit stochastic behavior.

Now that we have defined the three key uncertainty terms, aleatory, deterministic, and

epistemic, we can dissect the decision analysis framework to see where key uncertainties

lie and methods for their treatment.

4.1.2 Uncertainties within the Decision Analysis Framework

The decision analysis framework encompasses a variety of models, both aleatory and

deterministic.  For example, since the nuclear power plant PRA is an integral part of the

framework, its associated models plays an important part.  Included within the PRA are

aleatory models (probability that a component fails to start, probability that a component

fails to operate, probability that an operator fails to restore a component, etc.) and

deterministic models (the system fault trees, the accident sequence event trees).  But, the

overall framework entails more than just the safety model.  As we show in Figure 37,

several important modules, in addition to the PRA, are required.  In that figure, we noted

two critical deterministic models, the value tree and the decision model (e.g., an influence

diagram).  Also, the resultant metric out of the overall framework, that given by the PI

equation, is a deterministic model.

Additional detail on the decision framework models is shown in Figure 39.  Here, we

note that there are three primary analysis modules supporting the decision model: (1)

economics, (2) safety analysis, and (3) worker actions.  These three areas affect different

parts of the decision model, specifically within the context of the value tree.  An

influence implies that if an impact is identified that does not affect one of the five value

tree attributes, then it is not relevant to the quantitative portion of decision process.
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Figure 39.  Decision making framework modules and their influence on the value tree.

The majority of the analysis model types listed in Figure 39 are deterministic, with the

only aleatory models appearing under the safety analysis portion of the figure.   While

most of the modeling here is deterministic, all of the analysis modules do have epistemic

uncertainties that must be factored into the calculation of expected disutility.  For

example, under economics, the cost of lost power generation is not a fixed monetary

value – the cost of power varies from plant-to-plant and as a function of time.  This

imprecision in the value used for the replacement power costs will need to be factored

into the calculation any place that this cost variable is used in the decision model as

indicated by Equation 37.



143

The overall decision framework can be further subdivided as shown in Figure 40.  Here,

we identify the primary parts of the analysis in five categories: utility theory, plant

operation, engineering judgement, safety assessment, and economics.  For each of these

categories, we provide examples of either deterministic or aleatory models (as applicable)

and related epistemic uncertainties that may be found within the category.  We also

identify how these categories might affect the components of the decision model through

impacts to the decision alternatives, the chance events, or the outcomes.  We will discuss

unique facets of uncertainty for these categories in turn.

4.1.2.1 Uncertainties in the Value Tree and Disutilities

Models such as the value tree, AHP, and measurable equivalence are deterministic.

While deterministic, each has parameters or issues that give rise to epistemic

uncertainties.  It is unfortunate though that these uncertainties have received sparse

attention from decision analysis researchers.  Some work has been conducted on the

model uncertainty portion of epistemic uncertainty, where the consistency between

preference elicitation methods was compared (Pöyhönen and Hämäläinen, 2001).  In

addition, much of the prior work evaluating the parametric uncertainty has looked at

either judgement on the preference intervals or the direct assignment of probability

distributions (Escobar and Moreno-Jiménez, 2000).  Some of the work related to the

assignment of probability distributions is limited for our application due to the

assumption that the AHP matrix entries are independent.  Further, we question the

assignment of probability distributions on the AHP matrix entries since this practice

presumes that an entry is a random or stochastic variable.  If an AHP matrix entry is

indeed a random variable, is could be represented by an aleatory model.  But, aleatory

models are tied to an observable quantity that displays stochastic behavior (such as the

time to failure for a component).  In the case of an AHP matrix entry, the entry itself

represents the decision maker’s preference.  As such, the availability of an associated

stochastic, observable quantity is illusive.
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Figure 40.  The decision making framework identifying deterministic and aleatory

models, epistemic uncertainties, and their influence on the decision model decision

alternatives, chance events, and outcomes.
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Instead, it is our belief that the variability from the AHP process is entirely due to

epistemic uncertainty, namely that related to model uncertainty where the decision maker

is not entirely sure of the numeric AHP scale value for a particular pairwise comparison.

Since AHP is used often in decision making arenas and was used for our determination of

value tree weights, we decided to investigate the variability in AHP-based results.  To

collect AHP information, we provided comparison worksheets to our group of decision

makers.  An example of the worksheet used during the exercise is shown in Figure 41.  In

this figure, we ask the decision maker to perform a pairwise comparison of the cost

attribute for four outcomes:  (1) no cost, (2) 5,000 euro, (3) 50,000 euro, and (4) 500,000

euro.  The ranking used is the typical one-to-nine AHP scale, where a scale of “1”

indicates two outcomes are equally preferred (indifferent) while a “9” indicates that one

outcome is absolutely preferred over another outcome.  It is in this ranking process where

we need to question and quantify the uncertainty on disutility in order to correctly reflect

the uncertainty embodied in the overall decision process.

Figure 41.  Example of the disutility determination AHP worksheet for the cost attribute.
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The scales assigned during the AHP process are representations of preference.  As such,

the decision maker is given time to reflect on the pairwise comparisons.  The judgement

here is not akin to decision making under time duress or other pressures.  Discussion and

deliberation is an important part of the process, not only to help the decision makers

understand the process itself, but to provide reference points related to specific attributes

(e.g., a cost of one million euro is approximately one lost day of production at a nuclear

power plant).  Given the conditions under which this preference information is obtained,

it was our belief (read assumption) that for the types of attributes indicative of incident

management, the decision maker is able to specify his or her preference to an accuracy of

the scale, plus or minus one integer value away from this scale value.  Thus, if the

decision maker indicates that for the pairwise comparison of two outcomes (say paying

nothing versus paying 50,000 euro) the scale selected has a value of “4” then there is

some chance the decision maker really wanted either a “3” or a “5.”  Further, we assume

that the decision maker would not want to assign a scale of “2” or ”6” in this case.  Note

that we are not going to attempt to use fractional scale values (e.g., 3.2, 4.5) with AHP

even though some researchers have used such approaches.  If the most accurate a

decision maker can be is approximately one scale unit, then attempting to justify

subdivisions to the scale would not be supported by the epistemic uncertainty.  Further,

attempting to educate the decision maker on the subtleties between a scale value of 3.8

and 4.6 (“sort of weakly?” versus “almost strongly?”) would only hinder the preference

elicitation.

Assuming that the AHP scale accuracy is to one scale unit is just that, an assumption.

Thus, we need to look for evidence that would either support or discount this assumption.

We found this supporting evidence in two places, one qualitative and one quantitative.

First, during the disutility workshop, we noticed a couple of times that the decision maker

would record a scale value, then change that value, presumably after further thinking

about the pairwise comparison.  In all cases when this happened, the change was at most
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one scale unit (either up or down).  It could have been possible that the decision maker

had made notes (either mentally or in written form) not on the worksheet that would

indicate larger changes to the scale values.  But, we did not notice any evidence of this.

Second, following the workshop and the numerical disutility evaluation, we took all four

sets of worksheets to compare how one decision maker specified the AHP scale value

against the others.  During the workshop, there was generally discussion prior to the start

of the worksheet tasks to ensure everyone understood the tasks.  But, once the pairwise

comparisons started, in general each (of the four) decision makers operated

independently.  Note though that the workshop took place in a single room without

physical barriers preventing communication, nor did we discourage discussion.  But, we

made sure prior to filling out the worksheets that the decision makers understood that we

would provide a forum for deliberation later to ensure consistency between the decision

makers.  Thus, during the initial AHP application, the decision makers were free to

express their own thoughts.

The results from the disutility workshop were pairwise AHP comparisons for the four

decision makers.  Consequently, it was realized that we could query these four sets of

data to see how much did the AHP scale values change from one decision maker to the

next.  Then, we can utilize this comparison to bound the AHP scale accuracy since an

individual decision maker should vary less than different decision makers working

independently (again, an assumption).  The scale data analysis took the pairwise

comparisons for five worksheets (for four decision makers, giving a total of twenty

worksheets) where the specific worksheet elicitation is described in Table 16.  We then

calculated the standard deviation between the recorded AHP scale for each comparison.

The results of this data analysis, looking at the variability between decision makers, are

shown in Figure 42.
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Table 16.  Information for five of the AHP disutility worksheets.

Worksheet Identifier Attribute Outcome Range

Cost #1 Cost 0 to 500,000 euro

Cost #2 Cost 1,000,000 to 1,000,000,000 euro

Cost #3 Cost 100,000 to 100,000,000 euro

Dose #1 Radiological dose 0 to 0.1 Sv

Dose #2 Radiological dose 0 to 100 Sv

As we can see in Figure 42, the variation as measured by the standard deviation ranges

from zero (all four decision makers indicated the same AHP scale value for the particular

comparison) to two.  The average variation for the five worksheets was found to be 1.2.

When we evaluated the disutility cases for industrial accidents and precursors to core

damage, we found the average variation was about 1.7, but these two cases had five scale

points (e.g., for industrial accidents, we had none, minor injury, major injury, one fatality,

and 20 fatalities as the outcomes) rather than the four points for the cost and dose

worksheets.

It is interesting to note that for the case of the cost worksheets (Cost #1, Cost #2, and

Cost #3) we did not see a deviation between the sheet variability (each averaged about a

value of 1.4), even though the cost range represented drastically different outcomes.  The

two radiological dose cases did show slight changes in the variability where the “lesser

impact” case (Dose #1) had an average variability of 0.8 while the second case (Dose #2)

had an average variability of 1.1.
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We conclude, based upon both the qualitative and quantitative insights, that the

application of AHP for the performance weight yields a process that is able to specify

preference to an accuracy of the scale, plus or minus one integer value away from the

scale value.   Since deliberation was used in determining the final performance weight

results, we need to be able to specify an uncertainty on the weights based upon the

potential variation.  In other words, we utilize the final performance measure weights as

appropriate expected value, but will then apply an uncertainty one could expect to see out

of the direct application of AHP.

Figure 42.  Variation in AHP scales assignments for cost and radiological dose

evaluations for four independent decision makers.  (The front-most bars represent the

variation in the AHP first column, the middle bars represent the variation in the AHP

second column, and the rear bars represent the variation in the AHP third column.)
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To obtain insights into the uncertainty on the variability one might find when applying

AHP, we developed synthetic AHP matricies for a four-point (e.g., scale category I, II,

III, and IV) comparison.  Here, the synthetic matrix of scale N is defined as:

I II III IV

I 1 N N N

II 1/N 1 N N

III 1/N 1/N 1 N

IV 1/N 1/N 1/N 1

We then changed the AHP scale values from N=1 to N=9 and plotted the resultant

disutility curves.  The results of this calculation (for select values of N) are shown in

Figure 43.  From this figure, one gets a sense of the type of variability we might expect to

see in the applying AHP – variability that will manifest itself as part of the epistemic

uncertainty in the overall decision process.  We need to note a couple of items here:

1. Since the disutility is constrained between zero and unity, there is no variability

exhibited by the best or worst outcome disutility values.  By definition, the best

outcome has disutility of zero while the worst outcome has disutility of one.

2. The variability in the disutility is relatively small.  For example, jumping from the

N=2 to the N=3 disutility for scale category III only increases the disutility value

by about 6%.  For the same category, going from N=7 to N=8 increases the

disutility by less than 1%.
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3. As N increases, the percent increase in the disutility value decreases.  Thus, there

is an inverse relationship between the AHP weight and the potential variability.

This relationship is plotted in Figure 44.  The inverse relationship between

variability and AHP scale values – which is manifested in the epistemic

uncertainty on AHP – has been noted qualitatively by others.  For example

Accorsi, Apostolakis, and Zio noted a “saturation of the (AHP) scales” problem

during their elicitation of decision maker preferences. (Accorsi, Apostolakis, and

Zio, 1999)
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Figure 43.  Disutility variability for a four-point curve where the AHP weights are

modified from N=2 to N=9 for a synthetic matrix.
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Figure 44.  Variation in disutility values as a function of change in AHP scale.

Ultimately, as part of the overall decision framework, we can use the information shown

in Figure 43 and Figure 44 to approximate the epistemic uncertainty related to the use of

AHP (recall that AHP was used to determine the performance measure weights).

Since the overall variability seems to be relatively small (based upon the two previous

figures), we are going to simplify the Monte Carlo uncertainty sampling by forcing the

upper and lower bound to represent a uniform distribution on potential values.  Further,

we selected a representative value of 5% as representing the uncertainty.  A slightly more

sophisticated approach would be to utilize a triangular distribution where the midpoint is

defined by knowing the mean and the upper and lower bounds.  But, we do not expect the

numerical results to differ much between these two approaches, consequently we opt for

the routine (the uniform distribution) that both (1) minimizes the software development

time and (2) takes less computation time during the numerical evaluation.
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4.1.2.2 Uncertainties in Plant Operation

In theory, our decision analysis model of the world relies on the knowledge of physical

attributes of the nuclear power plant such pressures and temperatures.  Information

related to these physical attributes impact calculations throughout the decision model,

including success criteria in the PRA, selection of decision alternatives, and possible

outcomes.  But, for the analysis described in this report and for the decision advisor

prototype under development, we do not decompose the decision model down to the

“thermodynamics” level.  While there certainly are epistemic uncertainties related to the

parameters and models for plant operation, they simply were outside the scope of the

present analysis.

Note though that some operational parameters do creep into the analysis, and when

encountered, may be subjected to sensitivity analyses.  For example, in Figure 45, we

illustrate the sensitivity calculation for decision preference where (1) the time to

scheduled shutdown and (2) the leak rate for a faulty steam generator tube are allowed to

vary.  As the physical plant parameters are varied, notice that the preferential decision

alternative (isolate steam generator, shutdown the plant, continue operation with normal

water makeup) changes.  At the point of the decision, both the time until the next

schedule shutdown and the leak rate will be known by the decision maker – hence the

desire to treat these parameters via sensitivity calculations rather than as part of the model

epistemic uncertainty.
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Figure 45.  Example of the sensitivity in decision alternative preference as a function

physical plant parameters (1) time to scheduled shutdown and (2) leak rate for a faulty

steam generator tube.  The shading indicates the preferential decision alternative, either

normal primary makeup, isolating the leak, or shutting the plant down to repair the leak.

4.1.2.3 Uncertainty in Engineering Judgement

Judgement plays an important role in many engineering calculations simply due to the

fact that we can not model every aspect of a problem nor, for those things we do model,

can we represent detail to a microscopic level.  Instead, engineers tend to focus on what is

thought to be important and then model details to a macroscopic degree.
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In our work detailed in this report, judgement on outcomes such as the degree of negative

attention (or “bad publicity”) or the potential for worker injuries or fatalities has an

important role in the decision analysis.  Consequently, tied to each potential decision

alternative is the necessity to indicate the level of outcome for the value tree attributes

“stakeholder attention,” “radiological dose,” and “industrial accidents.”  The uncertainties

on these attributes could be evaluated through expert opinion like we did for the disutility

determination.  Two of the attributes (stakeholder attention and industrial accidents)

consist of disutilities measured on an ordinal scale.  The discrete nature of these attributes

reduces the need for formal uncertainty determination of their outcome (for example, we

can not have ½ a fatality).  Nonetheless, the decision prototype should use epistemic

uncertainties on the attribute outcomes similar to the approach we used for disutilities.

A more formal analysis of the uncertainty on factors residing from expert judgement

could utilize Bayesian noninformative uncertainty distributions.  One very useful

distribution that has been developed is the constrained noninformative, where the

constraint is that one knows the mean value of the factor (Atwood, 1996).  For many

situations of expert judgement, we are fortunate to know the parameter mean value – thus

this noninformative distribution is a convenient match to the realized intent of the

judgement.  Use of this distribution results in either a gamma or beta distribution

(depending on the parameter being modeled), where the indicated mean value matches

the mean value of the gamma/beta distribution.  Further, this distribution is an extension

of the Jeffreys prior that plays a central role in much of noninformative statistics (Martz

and Waller, 1991).  But, the constrained noninformative distribution utilizes the user-

specific mean value as part of the prior distribution, whereas the standard application of a

Jeffreys prior utilizes the mean value of the Jeffreys distribution.  In the case of binomial

data, the mean value of the Jeffreys prior is 0.5 (since the distribution is symmetrical

between zero and one), which has a tendency to skew the posterior uncertainty

distribution toward the middle (Atwood, 1996).  For the constrained noninformative

distribution defined by Atwood, the posterior uncertainty mean value tends to follow the

user-specified mean value, as we would expect in the case of expert judgement.
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4.1.2.4 Uncertainty in the Safety Assessment

The portion of the decision framework that generally has the most rigorous treatment of

uncertainty is in the safety assessment.  Most PRAs, and associated software analysis

tools, have long been able to evaluate epistemic uncertainties related to the model

parameters.  Unfortunately, other sources of epistemic uncertainty such as modeling

issues have not been investigated to the level of detail as that for parameters.  These other

epistemic areas should be considered in future research, but they were not the focus of

our work.  Further, we will not discuss in detail uncertainty related to PRA since the

literature is replete with such discussion (McCormick, 1981; Henley and Kumamoto,

1981; Modarres, 1993)

As already mentioned, PRAs utilize two types of models, deterministic and aleatory.

Within these models we have epistemic uncertainties.  In the safety model, epistemic

uncertainty deals with our state-of-knowledge about the components, safety system, and

accident sequences.  Model uncertainty falls under epistemic uncertainty but in the

current decision advisor framework, we only consider parametric uncertainties.  Within

PRA, these parametric uncertainties typically fall into one of two categories, those related

to a binomial process and those related to a Poisson process.  From these process we can

derive probabilistic distributions on the parameters of interest.  For example, a beta

distribution is frequently used when the failure is based on demand-type events (a

binomial process).  Recall that the binomial model for failures is defined as:
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where r is the number of failures, n is the number of trials (or demands), and p is the

probability of a failure per trial.

If the failure is based upon time-to-operate events (e.g., Poisson), then the gamma

distribution is frequently used for the epistemic uncertainty.  For example, the failure of a

diesel generator to function for eight hours may utilize the gamma distribution to
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characterize its epistemic uncertainty.  Recall that the Poisson distribution for failures is

defined as:
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where r is the number of failures, λ is the rate of failures (per unit time), and t is the

duration of interest (eight hours in our diesel generator example).

These two probabilistic models, the binomial and Poisson, provide the backbone to the

uncertainty analysis in most PRA and reliability modeling activities.  These, coupled with

deterministic models such as fault trees and events trees, provide the general framework

of PRA.

4.1.2.5 Uncertainty in Economics

As discussed previously, the information for the economics module we have developed

as part of the incident management prototype utilized (primarily) the NRC-developed

Regulatory Analysis Technical Evaluation Handbook, NUREG/BR-0184; Economic

Risks of Nuclear Power Reactor Accidents, NUREG/CR-3673; and Generic Cost

Estimates, NUREG/CR-4627 (U.S. NRC, 1997; Burke, Aldrich, and Rasmussen, 1984;

Sciacca, 1989, respectively).  It is unfortunate though that the uncertainty treatment is

superficial in both NUREG/BR-0184 and NUREG/CR-3673 and is nonexistant in

NUREG/CR-4627.  The data values in both reports are generally identified as “mean

values” and will be used as such in the prototype development.  Estimates of the

epistemic uncertainty of these values are not provided, with one exception.  In the case of

severe accident related worker dose, a low and high value are provided.  But, the

remaining economic parameters (replacement power costs, worker salaries, discount

rates, etc.) do not have a specified range of values.
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If we turn to general, non-nuclear cost indicators, we can determine an approximate

variation that one may expect to see for cost estimates.  For example, evaluating the

1992-2001 consumer price indexes (U.S. Government, 2002), we can calculate that the

aggregated price index for commodities and services varied, from year-to-year, by about

20% (as measured by one standard deviation).  If we focus just on either commodities or

services, costs associated with these categories were found to vary by about 30%.  More

volatile categories, such as energy prices, were found to vary by about 240%.

Consequently, it is not unreasonable to assume that economic estimates will vary 50%

about the point estimate value.  We utilized this variation, with the assumption of a

uniform distribution between the lower and upper points, for all cost parameters.

4.1.3 Example Epistemic Uncertainty Analysis

It is key to keep in mind that all of the discussion relevant to uncertainty must ultimately

focus on the intended application of the decision advisor prototype.  In short, the goal of

the advisor system is to suggest, from a list of potential decision alternatives, which one

is preferred.  Here, preference directly implies use of expected disutility via Equation 37.

But, it is not enough to simply perform Monte Carlo analysis on individual decision

options, plot the percentiles and statistical moments, and from those make a decision.

Instead, one must carefully consider the fact that the decision alternatives are not

independent, and as such, can not be treated as if they were independent.  Thus, what we

need to calculate is the predictive distribution for the decision alternative rankings (i.e.,

which decision is “first,” which one is “second,” etc., and their associated probabilities).

As a numerical example of the uncertainty on decision ranking, we ran a case study for a

leaking steam generator tube.  We focused on four potential decision alternatives,

Decision I was to stay at power and provided normal makeup water, Decision II was to

shut the plant down and plug the leaking tube, Decision III was to reduce power to

mitigate (some what) the leak, and Decision IV was to isolate (if possible) the leaking

steam generator.  For this analysis, we utilized an influence diagram and associated

decision tree and put representative epistemic uncertainties on all parameters.  Further, to
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help focus the analysis discussion, we utilized just cost consequences in this example

calculation.  The results of this analysis are shown in Figure 46.  In this figure, we see

that when considering the parameter uncertainties, that Decision I (use makeup and stay

at power) is preferred about 99% of the time.  Decision II (go to shutdown) is the

preferential decision only 1% of the time.  Also, note that Decision III (reduce power)

and Decision IV (isolate SG) are never preferred.

Figure 46.  Monte Carlo sampling of the epistemic distributions for the leaking steam

generator example parameters.

We further looked at the epistemic uncertainty with the decision making model by

calculating the uncertainty on each decision alternative individually from each other.  In

other words, we performed the same calculation as that shown in Figure 46, but this time
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we stored that expected value of the cost rather than the decision ranking.  The results of

this uncertainty evaluation on these decision nodes are shown in Figure 47.

Looking at Figure 47, we note two items of interest.  First, each decision alternative

outcome has significant uncertainty.  For example, focusing on Decision I, the 90%

probability interval ranges from 500,000 to 20,000,000 euros.  While Decision I does not

have the largest uncertainty, it is representative of the uncertainty range on expected

value that can be seen on a decision alternative.  Recall that the outcome out of a decision

model consists of a combination of chance variables (e.g., probability of a leaking tube

leading to a severe accident) and cost variables (e.g., plant shutdown costs, repair costs).

It is this combination of uncertain probabilities and uncertain outcomes that leads to

variation in the expected value calculation.

Figure 47.  Monte Carlo sampling of the epistemic distributions for the each decision

alternative in the leaking steam generator tube example.
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The second, but most important, item to note from Figure 47 is that for each of the

decisions, its 90% uncertainty range (i.e., the span of the bar shown from the 5% to the

95%) overlaps many of the other decision distributions.  This concept of one uncertainty

distribution (or range) overlapping another is known as stochastic dominance, where the

degree of the overlap dictates the “dominance” of one decision over another.  What is not

shown in the figure is the degree of overlap since the decision alternatives are not

probabilistically independent.  One must be very careful not to be mislead by the

“overlapping bars” shown in Figure 47 – the fact that two bars overlap to a large degree

(e.g., Decision III and Decision IV) does not imply that that are approximately equal with

respect to expected value.  To explore this potential pitfall, let us focus solely on

Decision I and Decision IV since they overlap to a large degree, but it was found (from

Figure 46) that Decision I is always preferred over Decision IV, where preference is

based upon choosing decision options that reduces cost.

We see from Figure 47 that the expected value for Decision I was lower than the mean

value for Decision IV.  Based upon this single metric, Decision I was the preferred

decision.  But, if we focus on the epistemic uncertainty of these two decisions, we see

that there is significant overlap.  In fact, we see that the 90% uncertainty range for

Decision IV overlaps almost 80% of the uncertainty range for Decision I.  One may be

mislead into thinking then that since the two uncertainty regions overlap to a large degree

that there is some fraction of the time where Decision IV would be preferred over

Decision I.  This line of reasoning is flawed due to the fact that the parameters for the

calculation of expected value of Decision I and Decision IV are not independent.  In fact,

the parameters are, to a large degree in this example case, identical between the two

decisions.

If we look at what makes up the two decisions (based upon a simple decision tree, which

we do not show here), we see that each is a linear combination of parameters (consisting
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of chance variables and associated cost outcomes).  The equations used by the decision

tree are shown below:

Decision I = C ⋅ S ⋅ core_damage_cost + C ⋅ /S ⋅ P ⋅ core_damage_cost +

C ⋅ /S ⋅ /P ⋅ (leakage_rate ⋅ 75000 ⋅ time_to_scheduled_shutdown) +

/C ⋅ S ⋅ core_damage_cost + /C ⋅ /S ⋅ P ⋅ core_damage_cost +

/C ⋅ /S ⋅ /P ⋅ (leakage_rate ⋅ 75000 ⋅ time_to_scheduled_shutdown)

Decision IV =  S ⋅ core_damage_cost + /S ⋅ P ⋅ core_damage_cost +

/S ⋅ /P ⋅ (shutdown_cost ⋅ 0.33 ⋅ time_to_scheduled_shutdown)

where

C =  Probability that makeup water fails

/C =  Probability that makeup water does not fail

S =  Probability that secondary cooling fails

/S =  Probability that secondary cooling does not fail

P =  Probability that primary cooling fails

/P =  Probability that primary cooling does not fail

core_damage_cost =  Cost if core is damaged (euro)

leakage_rate =  Leak rate (liters/hr)

shutdown_cost =  Replacement power cost per day (euro)

time_to_repair =  Days to repair a leaking tube (days)

time_to_scheduled_shutdown=  Time until the next scheduled shutdown (days)

As we see from the two equations above, many of the same parameters are found within

the two decision outcomes.  Consequently, any uncertainty analysis that compares the

two decisions must consider the fact that these two decisions are correlated.  Further, this

correlation between decision alternatives will be the present in most incident

management situations since the potential decision options available at the plant are

limited in number and are somewhat similar in nature.  While it is true that each decision

alternative has substantial uncertainty in an absolute sense, one should focus on all the
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decisions as a whole during the process of decision making.  In other words, the

integration shown in Equation 37 must be performed outside the summation of the i’th

performance measure and must encompass all potential decision alternatives.  Note also

that this problem is experienced in other applications, such as PRA importance measure

determination, when sensitivity calculations are performed and subsequently compared.

Lastly, when we evaluate Decision I and Decision IV together, including the epistemic

uncertainty, we find that Decision I is preferred over Decision IV 100% of the time (it

shows complete stochastic dominance over Decision IV).  One may wonder how this

outcome arises when there is significant overlap between the two uncertainty

distributions.  The answer to this query is that one need to remember that the decisions

are correlated, so when one of the parameters in Decision I has a high value (from the

Monte Carlo sampling), the parameter has that same high value for the Decision IV case.

Thus, given the formulation of the decision tree for Case 2, it turns out that Decision IV

is never preferred over Decision I (for the nominal case).  Note though that while

Decision IV is never preferred over Decision I, this is not the case for Decision II.  The

equation for Decision II (not shown) has parameters that are independent of those in

Decision I.  Consequently, there is a chance that Decision II could be preferred over

Decision I, even though the expected value for Decision II is much larger than the

expected value for Decision I.  But, after running the uncertainty analysis for both

decisions, we found that Decision I is preferred over Decision II about 99% of the time.

4.2 Deterministic Analysis within the Decision Analysis Framework

The overall formal decision process is rooted in deterministic models such as the PI,

value tree, disutilities, and fault trees from the PRA.  We will not discuss the details of

these models since the literature addresses much of the required background for value

trees and disutility (Clemen, 1996; Keeney and Raiffa, 1993; von Neumann and

Morgenstern, 1944) and fault trees (McCormick, 1981; Modarres, 1993).  But, we will

discuss attributes of the deterministic modeling as it relates to the PI, specifically

discussing PI impacts for both plant operation and economics.
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4.2.1 Deterministic Analysis in Plant Operation

The decision advisor prototype utilizes changes in plant status as a driver for a variety of

impacts such as cost and external attention.  Embedded in the analysis solution for the

decision model are heuristics that map upsets such as transients into observable PI

outcomes.  To categorize these upsets, we utilize the initiator designations from our

decision maker’s PRA.  In Table 17, we list these categories along with the initiator

impact on our performance measures of cost and external attention.  The values contained

in this table were elicited from our decision maker and are used as the default values for

the associated decision model parameters in the decision advisor prototype.

Table 17.  Operational impacts to the cost and external attention performance measures.

Initiator

Plant down time

(days)

Special repair
costs (euro) External attention outcome

Loss of coolant break 90 20,000,000 Long shutdown

Secondary-side pipe break 90 5,000,000 Long shutdown

Steam generator tube
rupture

90 5,000,000 Ultimatum

Main steam line break 90 5,000,000 Long shutdown

Anticipated transient
without scram

30 2,000,000 ultimatum

Loss of heat sink 30 2,000,000 ultimatum

Loss of electric power 8 none Inspection (nominal)

Ultimatum (if common
failures of the diesel
generators)

Secondary-side transient 1 none Report

Primary-side transient 1 none Report
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We will see later that the initiators are also used to determine plant state probabilities via

aleatory analysis.  Consequently, these initiating events end up being used in two ways,

first to determine the probability of getting to a decision-specific state and then second to

determine the outcome of that state.

4.2.2 Deterministic Analysis in Economics

The NRC has expended considerable effort collecting information related to costs of

certain activities at nuclear power plants.  For our incident management prototype, we

utilize much of this work (U.S. NRC, 1997; Burke, Aldrich, and Rasmussen, 1984;

Sciacca, 1989; Claiborne et al, 1989; Lopez and Sciacca, 1990) in order to determine

costs associated with decision alternatives and outcomes.  For the economics modeling,

the key tenants to the analysis are to (1) adequately identify primary cost factors and (2)

discount costs as necessary.

Expenses specific to decision alternatives should consider a number of factors.  For

example, the total cost of a decision outcome is the sum of many different types of

expenditures, possibly including: (Lopez and Sciacca, 1990)

1. Equipment and material costs.

2. Labor costs associated with installation and/or removal.

3. Costs associated with engineering and quality control and quality assurance.

4. Personnel staffing levels due to radiation exposure (i.e., spreading the dose

amongst personnel).

5. Costs to defuel, drain, and restore the reactor.

6. Replacement power costs.

We will briefly address the important categories below.
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Labor, Equipment, and Material Costs

The NRC provided the data which may serve as the basis for the equipment costs,

material costs, and labor estimates (Claiborne et al, 1989).  The NRC data incorporates

"as-built" cost information for U.S. nuclear plant activities.  For operating plants, there

are a number of workplace features which may impact the level of productivity and thus

increase the number of labor hours required to accomplished a task.  But, these

characteristics, would be specific to incidents that are being analyzed and would need to

be indicated by the user of the incident management prototype.  Also, the labor costs

associated with activities include overhead charges, administrative support, rent,

insurance, etc., and should be factored into the overall labor rate for the analysis.

Burke, Aldrich, and Rasmussen looked at repair costs for U.S. nuclear power plant

incidents and determined an approximate cost of 1,900 euro per hour represents actual

operating experience (1984), as indicated in Figure 48.  We utilized this value as the

nominal labor, equipment, and materials cost in the decision advisor prototype.  Special

equipment or staffing circumstances deemed beyond this average cost would be added to

the average cost estimated by the prototype.
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Figure 48.  Example of nuclear power plant repair costs (from Burke, Aldrich, and

Rasmussen, 1984) in 1984 U.S. dollars.
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Radiation Exposure Estimation

Worker radiation exposure estimates will be dependent on the type of incident and the

decision alternative considered.  The collective radiation exposure associated with a

decision should be estimated by multiplying the total labor hours necessary to perform

the activity (in the radiation area) and the work area dose rate associated with the

particular task.  The work area dose rate will range from very low doses (negligible) to

very high-dose areas (approximately 0.1 Sv/hour).  We utilize the dose rate as a

multiplicative factor on the total labor/material cost.  If the dose rate is low, then the cost

multiplier is one.  A high dose rate is defined as a rate larger that 0.001 Sv/hr (U.S.

Government, 2001).  For rates between 0.001 Sv/hr and 0.1 Sv/hour, we assume that the

cost multiplier is two.

Cost to Defuel, Drain, and Restore the Reactor

If a nuclear reactor core is left in place during shutdown operations, high radiation levels

may be realized at certain locations of the containment area.  Therefore, worker activities

within these areas may be limited and would need to be factored into the potential

decision alternatives.  Complications or safety issues will lengthen the duration of the

outage, where the cost of the outage can be estimated by knowing labor, material, repair,

and replacement power costs.  These impact must be specified by the user of the incident

advisor prototype.

Replacement Power Costs

Replacement power costs for the potential plant modifications are one of the important

factors in the overall methodology.  Estimates for this category of cost were developed

based on information provided to us by our decision maker.  A best estimate of 333,000

euro per 24 hour period was indicated as an appropriate value.  Note though that this cost

value does depend on the specific time of year, regional power requirements, and

duration of the outage, and as such, may vary from one incident to the next.  To account
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for possible variations, the incident advisor prototype allows the user to modify base

values with incident-specific information.

One interesting aspect of the decision process relates to the operation of a fleet of nuclear

power plants.  If our decision analysis methodology is used to determine a change that

will affect multiple plants, one must ensure that the disutility analysis is performed

correctly.  For example, if an implementation cost associated with a decision is one

million euro, but this decision is going to be applied to 20 plants, the disutility applicable

to this activity is u(20 × 1,000,000 euro), not 20 × u(1,000,000 euro).

4.3 Aleatory Analysis within the Decision Analysis Framework

Much of the analysis within the decision framework takes place within the deterministic

models discussed in the previous section.  Nonetheless, analysis of the aleatory portion

for the incident advisor is a critical part due to the fact the aleatory analysis determines

the chance nodes of the decision model.  This analysis will dictate the likelihood of

reaching outcomes such as a particular plant state (e.g., transient, loss of power, core

damage) or impacts to workers (e.g., injuries, fatalities).  In Figure 49, will illustrate a

selection of these chance nodes that are germane to the generic influence diagram

structure of the decision advisor.
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Figure 49.  Example generic influence diagram with the chance nodes highlighted.
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4.3.1 Aleatory Analysis in Plant Operation

Nuclear power plants are designed to respond to a variety of upset conditions.  These

initiating events have an estimated frequency of occurrence, from the PRA, and a

corresponding conditional core damage probability (CCDP), also from the PRA.  To

calculate the CCDP for the occurrence of an initiating event, one must modify the PRA to

account for the initiator that happened and the ones that did not.  Then, any complications

that are part of the incident, for example a failed component that is not restored, must be

indicated in the PRA.  In general, three items must be considered before the PRA can be

used to estimate a CCDP.

1. Finding the appropriate basic events in the PRA in order to change their failure

probability (for failed components) or initiator frequency to reflect the specifics of

the incident.

2. Assessing the probability that an initiator or affected component could be

recovered (i.e., returned to an operational state).  For example, if a small break

loss-of-coolant accident were to occur, the chance of isolating the leak may be

large and should be factored into the PRA calculation.

3. Determining other impacts on the PRA model such as changes to common-cause

failure probabilities (due to a failure) or component alignment/operation issues.

To model the aleatory core damage impact of an initiator, we first setting the initiating

events to either probabilities of one (if it happened) or zero (for the remaining ones).

Then, one would normally consider the potential of recovery from the initiator.  But, for

the decision advisor prototype, we are not going to credit initiator recoveries since the

plant upset will occur and the impact to the PI performance measures may be felt,

regardless of the initiator degree.  Other component-type recoveries embedded in the

PRA will be left as is since the operators may be required to restore failed components

following an initiating event.  If the incident itself is one such that a component is failed,
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then its related impacts to the fault and event tree PRA models are included during the

CCDP calculation.  After the PRA model is adjusted to reflect both the initiating event

and the component failures (if any), then the CCDP determination may proceed.  Smith

(1998) and François (1998) provide additional information and insights for CCDP

calculations of nuclear power plant risk models.

From the decision maker’s PRA, we have determined nominal initiator frequencies and

CCDPs (for the full-power mode, state A).  These values, shown in Table 18, are

embedded in the knowledge base utilized by the decision advisor prototype since they

represent the outcomes identified in our generic chance nodes.

Table 18.  Nominal initiator frequencies and impacts to the core damage probability

(assuming no other component failures).

Initiator

Nominal frequency

(per hour)

Nominal CCDP

(plant state A)

Loss of coolant break 2.9E-3 6.1E-4

Secondary-side pipe break 1.3E-3 7.1E-4

Steam generator tube rupture 1.6E-2 3.3E-5

Main steam line break 4.2E-3 2.1E-4

Anticipated transient without scram 7.4E-1 1.9E-7

Loss of heat sink 1.3E-4 3.0E-3

Loss of electric power 6.7E-1 1.1E-6

Secondary-side transient 7.0E-1 7.5E-8

Primary-side transient 3.9E-2 7.1E-6

We have chosen to model plant upset conditions as leading to impacts in the PI

performance measures such as core damage, cost, and external attention.  The other two

remaining performance measures, industrial accidents and radiological dose, are
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impacted by worker operations.  These two measures represent a health burden on

workers, and as such, are modeled via a separate (from the PRA) model.  But, the work

impact approach is similar in that we determine the rate of impacts (like initiators are

impacts to the physical operation of the plant) for items such as injuries and deaths via an

aleatory process.

For the determination of worker accident rates, we utilized data collected for the U.S.

Department of Energy Computerized Accident/Injury Reporting System (CAIRS).

CAIRS is a centralized point used to gather reports of injuries and other accidents that

happen during Department of Energy operations.  Worker accident data from 1995 to

2000 have been collected, analyzed, and processed for the ESHRAP risk analysis

software developed by the Idaho National Engineering and Environmental Laboratory

(Eide and Wierman, 2002).  The CAIRS data set provides both the number of worker

hours and the number of incidents, thereby allowing for case rates to be estimated.  For

the incident advisor prototype, we utilized the categories of rates of worker incidents, the

probability of minor injury (given a worker incident), the probability of severe injury

(given a worker incident), and the probability of death (given a worker incident).  Note

that we defined minor injuries as those that resulted in a work restriction but no lost days

away from work.  The CAIRS data results are listed in Table 19.

Table 19.  U.S. Department of Energy CAIRS worker accident data.

Case

Nominal frequency

(per hour) Nominal probability

Worker incident 1.6E-4

Negligible impact 5.34E-1

Minor injury 2.57E-1

Severe injury 2.09E-1

Fatality 5.0E-4
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4.3.2 Aleatory Analysis in the Safety Assessment

The plant safety assessment, as defined by the PRA, addressed component failures,

human actions, and system response through a variety of models.  Earlier, we identified

where in the decision model (Figure 49) many of these impacts are felt.  The aleatory

analysis utilized from the PRA includes the determination of failure probabilities for

degraded systems and operator actions, both prior to an upset condition and following an

upset condition.  For information into degraded system modeling using the PRA, we refer

the reader to Smith (1998).

One of the decision alternatives that may be frequently encountered is the potential of

repairing or replacing an inoperable component without shutting the plant down.  Thus,

in the knowledge base behind the incident advisor, we have defined a “decision node”

representing this decision alternative.  But, in addition to this node, we have identified

two other nodes that represent the repair process.  The first of these two nodes contains

an aleatory model that determines the probability that the repair process causes an upset

condition (e.g., an operator inadvertently trips the plant by shorting a circuit).  The

second of these two nodes contains an aleatory model that determines the probability that

the repair will be successful or not.  Both of these two nodes require determination of

human performance.

One way to obtain an estimate for the human failure probability (such as a test-caused

failure) is to use an existing database or a methodology for estimating human error rates.

For example, the Technique for Human Error Rate Prediction could classify incident-

related events (Swain and Guttmann, 1983).  Or, other methods, such as the Accident

Sequence Evaluation Program (Swain, 1987) or the checklist method for the human

reliability portion of the U.S. NRC Standardized Plant Analysis Risk models (Smith et

al., 2002) could be used.
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The Accident Sequence Evaluation Program does provide incident-type generic human

error rates.  For example, the probability of human failure for preventive maintenance or

tests, assuming no recovery factors, is given as 0.03.  This value is considered to be a

rough estimate for operators not effectively performing a test or maintenance.

Additionally, the NUCLARR database could be used to obtain a probability of test-

caused failures (Gertman et al., 1989).  From this database, the test-caused probability of

failure was found to be 0.002, which represents an aggregate of a variety of failures.  In

nuclear power plants, the use of procedures by plant personnel minimizes the chance of

having a test-caused failure.  But, for complicated systems or complicated testing

procedures, the probability of a test failure may be larger than the 0.002 average value.

Conversely, for simple systems or uncomplicated testing procedures, the probability of a

test-caused failure may be much lower.  In the incident advisor prototype, we allow the

user to specify an incident specific value for the the human errors.

For complex testing arrangements, where components and system states change during

the procedure, a static failure model may only provide a rough estimate of the failure

probability.  For more detailed analyses, on could utilize Markovian state change

analysis.  This technique requires that all potential states (operating, under repair, being

tested, etc.) of a particular system be known.  As such, the number of potential states may

become large as the number of components in the system increases and the number of

possible states for each component increase.  It is this potential for a large number of

system states which results in intractable analysis for many Markovian analyses.  While

past research has attempted to overcome the limitations of Markov analysis for systems

such as nuclear power plants (Papazoglou and Gyftopoulos, 1977), Markovian analysis is

not routinely employed.  But, if the delineated states are few, Markov techniques may be

useful to represent dynamic situations.

Related to Markovian analysis is the technique of event simulation.  While not typically

used as part of formal decision analysis, simulation may be a powerful analysis tool

since, for any one decision alternative, the state of the plant may take a variety of
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different paths depending on the aleatory outcomes.  For example, if one decides to

continue operating the plant with a degraded safety system, the plant may (a) function

properly for a lengthy period; (b) undergo an upset condition and then stay shut down due

to the upset; or (c) undergo an upset and quickly return to full operation.  A static model,

such as a decision tree, may only approximate these plant states and their associated

impacts on the PI decision criteria.  Simulation allows us to bring a higher fidelity to the

analysis process, but at the cost of longer analysis times.  Others have discussed (for

static models) the fact that lengthy analysis times poses problems for real-world use of

decision analysis techniques (Call and Miller, 1990).†  Nonetheless, the idea of wrapping

the entire decision process, from the time of the decision until the final outcome at a

future point in time, in a simulation framework deserves attention – toward that end we

devote a section to explore associated issues and techniques.

4.4 Process Simulation

One of the novel ideas expressed in this document is our approach to solving the decision

model.  While static solution techniques such as the “roll-back method” (Clemen, 1996)

of decision trees may work in many situations, there may be other situations that require a

more robust analysis regime.  Thus, we proposed to decompose the entire decision

process in a simulation framework.  While previous researchers have utilized what they

called “simulation” to sample the epistemic distributions of decision attributes, we note

that a more suitable nomenclature for this analysis is “Monte Carlo uncertainty

propagation.”  When we use the term “simulation” in this thesis, we intend its meaning to

be the classical definition, namely that of stochastic simulation to produce results from a

model that has stochastic elements (Ripley, 1987), where here stochastic has the same

meaning as aleatory.  Of course our simulation will have unknown parameters – or

                                               
† Thanks to modern computers, our test PC (1.5 GHz Pentium 4) is able to provide approximately one

million random numbers every three seconds.   This calculation speed indicates that the issue of “fast

enough” is becoming less of a problem in the decision analysis domain.
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epistemic uncertainties – which we propagate through the simulation via Monte Carlo

methods.  But the simulation itself deals with the “randomness” one faces following a

decision, randomness that tells us that we will not know exactly how the “play” ends

even though we have a good idea of the actors and the story.

4.4.1 Why do we need simulation?

As part of the work for this document, we evaluated several incident case studies.  We

used these analyses as a test-bed for ideas to help guide the research.  One of these case

studies evaluated decision making following a failure of a component that senses water

pressure in the primary coolant loop of a nuclear reactor.  This component, a pressure

transducer, is only one of four such components.  Consequently, we can operate the plant

while one of these components is failed.  But, our initial decision model for the pressure

transducer did not include the potential for repair.  An important question then arises;

"how realistic is the no-repair assumption with respect to the decision model?"

If the decision maker chooses the decision alternative of continued operation of the

power plant (with the pressure transducer failed), then he or she runs the risk of facing an

inadvertent plant trip (from one of the three other transducers).  While the possibility of a

single trip is captured in the pressure transducer model, there still exists a modeling

limitation since it is possible to trip, repair the component, and then continue operation

(we presume that the plant would not restart until the failed component was repaired).

But, a second decision alternative for this model could be to shutdown and fix the

problem immediately.  Thus, we have, at first glance, different time duration for each

alternative.  Note though that we should have a consistent duration for the decision

alternatives, otherwise we are comparing two options that are not really comparable.  To

illustrate this point, let us look at a portion of the initial decision model related

specifically to tripping the plant via the pressure transducers.  We will focus just on the

chance node representing the trip (noted as "Spurious Shutdown" in the chance node) and

the outcome (noted as "Loss" in the value node) in Figure 50.
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Figure 50.  Example nodes from the initial pressure transducer case study decision

model.

As noted in Figure 50, the outcome of a situation where the plant undergoes (one or

more) spurious shutdowns is given by the variable "Loss_1."  The other outcome,

"Loss_2," represents situations where the plant does not trip (with probability given by

“NoSS”) due to the pressure transducers and will not be discussed further.  The outcome

represented by Loss_1 represents the PI for the decision tree sequence of interest, where

in this case, we are focusing on either sequence (1) or sequence (3), depending on the

decision alternative.  Recall that the PI is a multi-attribute metric which factors in the
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decision makers weights (on the i'th PI), the disutility for the outcome, and the

probability of seeing that outcome.  For example, sequence (1) may include impacts such

as costs (due to the plant tripping inadvertently), increased external attention (perhaps by

negative public following the plant trip), and an increase in the CCDP (since we are

challenging safety systems after the plant trip).

Complicating the determination of the Loss_1 outcome is the fact that the decision

outcomes may span a long period of time.  Nominally, the time period of interest is the

duration until the next scheduled plant outage, which could be as long as 18-months for

current nuclear power plants.  But, for some issues, it is possible that the time window of

interest could be measured in years.  Thus, we need to consider the possibility of a

scenario like:

1.  The plant trips inadvertently

2.  The degraded pressure transducer(s) are repaired

3.  The plant is restored to operation

4.  The plant trips sometime after returning to operation

If the duration is sufficiently long, one may need to consider multiple plant trips.

Contrast this scenario with our original pressure transducer model.  The original model

did not include the potential for repair following a trip, but we just indicated that repair

following a plant trip is what would normally happen.  Further, the original model

allowed a maximum of one plant trip over the entire duration, regardless of the length of

the duration.  Clearly, this simplifying assumption only would be valid for those cases

where it is unlikely to have the pressure transducer trip the plant.  Others have noted that

static models have constraints that limit their usefulness when compared against

simulation techniques (Goel and Ren, 1999).

The outcome represented in the decision model must exhibit a one-to-one relationship

with the supporting models.  In this case for the pressure transducers, if the plant

experiences more than one trip, the PI for the outcome node must reflect the multiple
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outages.  If each outage following a plant trip results in several days of lost power

generation, the cost impact could be quite large.  Further, if a plant experiences more than

one trip in a relatively short period of time, other impacts like external attention may be

increased due to the sensitive nature of initiating events at nuclear power plants.  The

original static model does not reflect these time-dependent situations.

4.4.2 Simulating Dynamic Processes

Since the standard decision tree and fault tree model may not represent our decision

process adequately in some cases, we can turn to more sophisticated analysis techniques.

Fortunately, the nuclear power plant PRA research community has explored related

analysis issues, namely on the topic of “dynamic PRA.”  Here, the term “dynamic” is

intended to bring in the aspect of time and the evolution of plant processes as an integral

part of the PRA model.  For an overview of several dynamic methods related to PRA

(circa early 1990), we direct the reader to Siu’s review paper (1994).  From the research

literature, we were able to distill the major elements of the PRA dynamic methods into a

few salient features, namely how the methods treats time and model space.  For this body

of work, we show a summarization of the major modeling methods in Figure 51.

A few words about the information in Figure 51 are necessary.  First, all the reviewed

dynamic methods proposed for PRA applications are a subset of general Markov theory

(for example, see Howard, 1971).  Consequently, we list the four major aspects of the

Markovian theory behind these dynamics method:  (1) renewal processes, (2) vector

processes, (3) transient processes, and (4) semi-Markovian processes.  With Markov

theory as an underlying background, one can then attack the dynamic modeling problem

by utilizing (1) discrete space (D-space) or continuous space (C-space);  (2) discrete time

or continuous time; and (3) Markovian or semi-Markovian state transitions.  Note that

very few proposed dynamic PRA models utilize both continuous time and space.

The simulation technique we are proposing as part of the decision analysis framework

follows that of discrete event simulation.  In general, discrete event simulation is a semi-
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Markovian technique utilizing both discrete time and discrete space.  In our case, time is

discretized from the point of the decision until the next scheduled plant outage while

space is discretized by way of the plant operational condition.  The aleatory and

deterministic models we described earlier allow us to determine the movement through

the phase space of the simulation.

Legend: D-space = discrete space C-space = continuous space

Figure 51.  Characterization of dynamic PRA analysis methods.
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To better describe the use of simulation, we return to the pressure transducer example.  A

simulation was performed using the algorithm described in Appendix E for a 1-of-3

pressure transducer system, where a trip occurs if one (of the three) transducer fails.  We

utilized this algorithm to determine system performance where the component failure rate

was varied from 1×10-5/hr to 1×10-2/hr, all for a fixed mission time of 2,400 hours.  For

this evaluation, we calculated an expected number of plant trips, but we could also

determine a point-wise unreliability or the average unreliability.  The simulation model

was designed to include the potential of repair if the plant inadvertently trips.  For this

example, we assumed that the plant would be off-line for two days to repair the pressure

transducer following the plant trip.

In order to check the pressure transducer simulation calculation, we need to determine an

analytical solution to the 1-of-3 (failure criteria) system.  The aleatory model that

represents an individual transducer failure is given by the unreliability equation:

T
transducer etU λ−−=1)( (40)

where λ is the failure rate and T is the mission time.  We note that the component

reliability for a pressure transducer is given by R(t) = 1 - U(t).  For a system of m

identical components, the system reliability is (Martz and Waller, 1991)
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where r is the success criteria (i.e., the number of components that must function for the

system to function), k is the number of redundant components, and R(t) is the component

reliability.  In our case, k is three while r is three (for success), or:
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We can now determine the point-wise unreliability for the system:

T
system etU λ31)( −−= (43)

If � is 2×10-5/hr and T is 2400 hours, U(t)PT system equals 0.134.  Note though, that the

value represents a point-wise unreliability.  This point-wise metric is the probability that

one of the three pressure transducer failed (and was not repaired) at a time of 2400 hours.

It does not indicate how much of the 2400 hours was spent in a “failed” state nor does it

include the potential for repair.  To determine the average unavailability, we must

integrate the unavailability expression over the mission time, or:
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We then ran the system simulation using 20,000 iterations to compare against the analytic

solutions derived above.  We found, from the simulation, that the average unavailability

was 7.1×10-2, assuming a 1-of-3 (for failure) system, a failure rate of  2×10-5/hr, a

mission time of 2,400 hours, and no repair.  The simulation results are in good agreement

with that calculated via Equation 44 (it differs by about 3% from the exact calculation).

Additional confirmatory calculations where we vary the failure rate may be found in

Appendix E.  Further, we used the simulation to determine the number of trips of the

system.  The simulation results for the expected number of trips are shown in Figure 52.

Several observations related to these results must be noted.
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Figure 52.  Simulation of system performance to illustrate the potential for multiple plant

outages following component repairs.

First, for the case where repair is possible, an analytic solution to the problem would be

difficult due to the fact that the reliability model considers two pressure transducer

system states.  The first state follows the initial failure of the pressure transducer (when

the decision to continue operation is made) but is prior to an inadvertent plant trip.  In

other words, the first plant state represents a degraded 2-of-4 (for failure) system.  The

second state follows an inadvertent plant trip and returns to a non-degraded 2-of-4

system.  Any analytic solution would have to consider these two states, and the

transitions between them, in an integrated fashion.  Of course, the simulation models both

the degraded and non-degraded pressure transducer configurations as a direct part of the

analysis, as we illustrate in Figure 53 for six iteration cases from zero to 2,400 hours

(with a transducer failure rate of 1×10-3/hr).
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Second, for low failure rates (less than about 2×10-4/hr), the two cases, with and without

repair, have effectively the same expected number of trips.  Further, this value (E[trips])

is equal to the probability of trip that was described by the original pressure transducer

model we utilized.  It should be realized that for any process where the expected number

of upset conditions is low (E[upset condition] << 1.0), then static modeling will provide

adequate probabilistic input into the decision model.  But, if a static model is used, one

must be careful not to violate the low probability assumption during an uncertainty or

sensitivity analysis.

Figure 53.  Six iteration results from the system simulation for the repair and no repair

cases.
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Third, the structure of the system, coupled with the component failure properties such as

failure rates, determine the likelihood of spuriously tripping the plant.  Note that as the

failure rate of an individual pressure transducer increases, the expected number of trips

increases.  One should note from Figure 53 that, in some iterations, the plant tripped (due

to the transducers) more than once since the failure rate was large (for illustration

purposes).  Adding redundancy to the transducer system would reduce the expected

number of trips, especially for the case where one of the transducers has failed in a safe

state.

Fourth, the epistemic uncertainty is not taken into consideration in Equation 44.  Since

the pressure transducer failure rate is not known, we would need to integrate over this

variable also in order to correctly factor in its variability.  But, in many cases, this

calculation becomes analytically intractable.  Conversely, to include the failure rate

epistemic uncertainty in the simulation, we would only need to sample (via Monte Carlo)

the failure rate a number of times (defined by the sample size) and repeat the simulation.

Of course, this ease in calculation comes at the expense of calculation time.

A second simulation was performed to contrast the calculation precision between static

models (such as fault trees) and dynamic models (our simulation).  We evaluated a four

pump system, where the pump failure rate was 1×10-4/hr, the overall mission time was

8,760 hours, and we assumed that repairs were not possible.  This case was run for such a

lengthy mission time to illustrate the problems one may encounter when modeling

aleatory behavior using static methods (such as fault trees) rather than simulation.  For

this analysis, we calculated metrics for both an individual pump train and the overall

system in several configurations (i.e., a series 1-of-4, 2-of-4, 3-of-4, and parallel 4-of-4).

For the pump train, we calculated the average unavailability and point-wise unavailability

(at the end of the mission time), where these unavailabilities are represented by their

classical definitions (Apostolakis and Chu, 1980).   For the system configurations, we

only calculated the system average unavailability over the mission time.
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The results of that static and simulation analysis are shown in Figure 54.  We provide

three quantification techniques for the fault tree model:  (1) the standard minimal cut set

upper bound approximation and (2) an exact probability via the “inclusion-exclusion”

technique.  For each case, we plot the simulation results and then the exact results.  Note

that the exact results were determined by evaluating the analytic solution for system

failure and integrating over the mission time to obtain the final results.

As we can see in the results, in some cases the fault tree results for a single pump train is

too conservative.  For example, the pump average unavailability is too large by a factor

of almost two.  If we look at the system results, we see that as the system unavailability

decreases, the fault tree results become closer to the exact value.  The simulation results

match quite well with the exact calculation for all cases.

One should note that having an “exact” probability from a fault tree model would not

necessarily yield the correct probabilistic answer.  Since fault tree cut set solutions do not

(generally) integrate over the time period of interest, it is difficult to determine an

average unavailability using these models.  Consequently, having advanced solution

techniques, such as binary decision diagrams, to solve questionable models (e.g., static

fault trees for dynamic scenarios) or to determine averages may provide little assistance.
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Figure 54.  Results comparisons for fault tree analysis versus simulation.



189

4.4.3 Simulation of Decision Processes

The discrete event simulation approach to address the implementation and outcome of

decisions relies upon traditional Monte Carlo methods to trace a sequence of (potential)

events through time.  As part of this simulation, impacts related to the value tree

attributes must be considered.  For example, if one iteration of the simulation leads to an

extended plant outage, then the outcome will be felt though the cost and, possibly,

through the external attention portions of the PI.  The overall impact of this outage will

be measured in terms of a vector of disutility attributes, including costs, worker impact,

safety, and external attention.  Thus, the disutility for this particular iteration will be

higher than another iteration where no adverse situations were encountered.  But, since

these types of events are rare, the probability of seeing a long shutdown will discount the

PI disutilities.  The goal of the simulation is to run though as many potential outcomes as

possible, determine their individual impacts, weight the impacts by their respective

likelihood, and then determine an overall E[PI] for each decision alternative.  Then, the

decision alternative with the lowest E[PI] is considered to be the preferred option.

In order to implement the discrete event simulation, we could utilize one of two basic

approaches.  First, the simulation could question state transition potentials at each

incremental time step.  This method is referred to as simple or thinning event simulation

since it is a straightforward (but inefficient) approach where potential state changes are

allowed at each time increment.  The second simulation method could question the time

duration expected in a particular state, and then jump from one state to the next by

knowing the current state duration.  This second method is referred to "time-of-flight" or

lifetime event simulation since it focuses on a transition time rather than a transition

probability used in the first method.  In general, the lifetime event simulation approach is

much more computationally efficient, especially for the case of reliable components and

systems.
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4.4.3.1 Thinning Event Simulation

In the thinning event simulation approach, we focus on the determination of the

probability that the simulation will transition from a state to another state within the next

time interval.  Examples of these transition probabilities (within the next incremental

time step) are the probability that a pump fails to operate, the probability that a pressure

transducer sends a spurious signal, the probability that a component is repaired, and the

probability that an initiating event occurs.  The simulation examples that were discussed

earlier and the simulation source code in Appendix E all fall into the category thinning

event simulation.

In a nuclear power plant, two general types of state transitions are modeled.  First, we

represent state changes “per demand,” where the state transition is modeled via a

binomial aleatory model.  Second, we represent state changes “per time,” where the state

transition is modeled via a Poisson aleatory model and the time step is incrementally

small.  For those cases where the time is small (which it will be during the event

simulation) we can write the Poisson equation as (Martz and Waller, 1991)
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where

� = the hazard rate of transitions,

T = the time until the occurrence of a state transition,

t = the operational time.

∆t = a small change in operational time.

Consequently, if we are in state A at time t, given that T > t, then the probability that we

have a failure in the next ∆t is given by Equation 45.  Further, if the product �∆t is small

(less than 0.1), then we can rewrite Equation 45 as



191

tetTttTtP t ∆≈−=>∆+≤≤ ∆− λλ1)|( (46)

To perform the simulation, we use a Metropolis technique (Metropolis et al, 1953; Au

and Beck, 2001) combined with the probability integral transformation theorem (Bain

and Englehardt, 1992).  One of the features of probability integral transformation is that

we can sample from a cumulative distribution function,† F, for a random variable X since

xi = F-1(ui), where ui is uniformly distributed from 0 to 1 (see pp. 201-202, Bain and

Englehardt).  In our Equation 46, the cumulative distribution of interest is P(t).

Consequently, within the Metropolis routine, P(t) is uniformly distributed and the

“candidate” transition (which we will call the state transition criteria) can be found by

tUnifttTttTtP ∆=∆>∆+≤≤= //)|(λ (47)

where Unif is a uniformly distributed random variate from 0 to 1.  Thus, if we know the

failure rate and the time step, we can call a random number generator at each time step to

determine if the transition is allowed or not.

In the case of the binomial model, if the number of trials is one (n = 1) then we have the

limiting case which is known as a Bernoulli trial.  Since we have only one trial, at most

we may have one failure (r = 1).  Thus, the binomial model reduces to

prP == )1( (48)

where r is the number of failures and p is the probability of a failure per trial.  Here, we

have a simple state transition criteria for the Metropolis routine, namely p = Unif.

Now that we have defined the probability of changing state in the next small time interval

for either demand or time-driven processes, a decision-applicable thinning event

simulation algorithm will follow the general steps:

                                               
† The only constraint on the cumulative function is that it must be one-to-one.
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1. For a given decision alternative and state, determine a simulated probability

value, ρ.  The initial state for the decision process is one of the decision advisor

inputs that is specified by the user.  For example, one decision may be to remain

at power.  The initial state of the plant in this case would be the full power mode

A.

2. Compare the simulated probability (ρ) against the state transition criteria (p) using

either Equation 46 or Equation 48, as appropriate for the i’th time step.

A. If ρ > p, then the new state transition is not permitted.  For example, ρ

may be 0.61, but the transition criteria for the state may only be 0.05.

Consequently, this state can not undergo a transition.  As a result of this

"non event", the algorithm loop counter would increase by one delta time

(∆t).  The disutility associated with the state would be a function of the

state and would be cumulatively tracked as a function of time.  For

example, if the state is such that the plant is operating and continues

operating, the disutility associated with this state is zero.  But, if the state

represented the plant shutdown awaiting a component repair, then impacts

associated with that outcome (perhaps cost) would be accumulated.

This process would be repeated for each of the desired state transitions as

needed.  Then, following the state processing (where ρ > p), the next

simulation iteration would return to step 1 for the i+1 time interval.

B. If ρ < p, then the state transition is allowed.  Consequently, this state

transition may cause an upset condition (if currently in a benign state) and

may impact one or more performance measures.  Therefore, we need to

calculate the potential outcome of the transition and store the change in

plant state.
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If the transition represents a plant upset such as a transient, then the upset

immediately impacts attributes such as cost and external attention, as

dictated by analysis such as the deterministic economic models discussed

earlier.  Conversely, positive state transitions may lead to a

discontinuation of disutility impacts.  For example, if a shutdown plant

returns to power, then costs associated with the shutdown would not

accumulate further.  But, the costs that were recorded would be stored and

represent the cost outcome for that decision up to the current time interval.

For those transitions that do not lead directly to a plant upset (for example,

a component may fail that does not cause a trip), impacts to the PI

attributes should still be estimated.  For example, the decision maker may

decide to repair an inoperable component while staying at power.

3. The process described by steps 1 and 2 are repeated until all time intervals are

evaluated through the end of the overall mission time.  For many decision

evaluations, the overall mission time is given by the time until the next schedule

plant shutdown.  Consequently, the total time duration may be measured in

months, which may require a large number of time step iterations to complete the

analysis.

4. After a specified number of (simulation) iterations, the disutility for each

performance measure will be known for each iteration.  The expected PI may then

be estimated from the stored simulation history.

5. After obtaining the expected PI for the j'th decision, the process (steps 1 through

3) are repeated for the j+1 decision alternative.  Upon completion of all the

decision alternatives, the uncertainty on each alternative outcome must be

determined.  The uncertainty determination is accomplished by returning to steps

1 through 4, but, for each new uncertainty iteration, the parameters utilized in the

simulation are varied according to their individual probability distribution
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functions (i.e., their epistemic uncertainty).  For example, the repair probability of

a component may be determined from operational data and could be exponentially

distributed.  For the k'th (uncertainty) iteration, the simulation algorithm would

pick a value from the exponential repair distribution.  In general, all of the

parameters utilized in the simulation are uncertain, including state transition rates,

component failure probabilities, value tree weights, conditional disutility

outcomes, repair times, and cost information.

6. Using the decision rule for expected PI, we determine the preferential decision

alternative from the list of alternatives.

While the heuristics we presented are specific to simulating decision processes, they are

similar to other simulation methods defined in the literature (Kim and Lee, 1992;

Psillakis, 1995; Goel and Ren, 1999; Au and Beck, 2001).
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4.4.3.2 Lifetime Event Simulation

In the lifetime event simulation approach, we focus on the determination of times until a

transition.  Examples of these times are the duration a pump operates, the time until a

pressure transducer sends a spurious signal, the time until an inoperable component is

repaired, or the time until an initiating event occurs.  If we assume that one of these states

follow the Poisson conditions described earlier in Section 4.1, then the time to a state

transition is a random variable and can be represented probabilistically by:

P(T < t) = 1 – e - � t (49)

where

� = the rate of transitions,

T = the time until the occurrence of a state transition,

t = the operational time.

If the event of concern is not represented by a homogeneous Poisson process, then the

functional form of Equation 49 changes, but the overall simulation technique does not

need to be modified.

Using the probability integral transformation theorem (Bain and Englehardt, 1992), the

parameter t can be simulated using the expression:

t = ln[ 1 - P(T < t)] / (-�) (50)

but, 1 - P(T < t) is a uniform random variate from 0 to 1 (we will denote this variate as

Unif ), so

t = ln(Unif ) / (-�) (51)
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Note that Unif = 1 - Unif, since Unif is a uniform random number between 0 and 1.

Further, we point out that if  X = - ln[1 – Unif ], then X ~ exp(1) (Ripley, 1987).

Now that we have defined the time in a Poisson state (say prior to a plant initiating event

such as a transient or tube rupture), a decision-applicable lifetime event simulation

algorithm will follow the general steps:

1. For a given decision alternative and state hazard rate, determine a simulated value

of t using Equation 51.

2. Compare the simulated time (t) against the mission time (�).

A. If t > �, then the new state arrival is after the end of the mission.  For

example, t might be 3.2 years, but the mission time for the decision may

only be 100 days.  Consequently, this state can not cause an upset

condition.  As a result of this "non event", the algorithm loop counter

would increase by one and the disutility attribute associated with the state

would be a function of the state.  If the plant was currently at power, the

disutility impact is zero (no upset was seen).  But, if the plant were

shutdown, then the duration of the outage would affect performance

measures such as the cost.

This process would be repeated for each of the desired initiating events.

Then, following the processing of the initiators, the next simulation

iteration would return to step 1.

B. If  t < �, then the new state arrival is less than the mission time.

Consequently, this state transition may cause an upset condition and

subsequent impact to one or more disutility attributes.  Therefore, we need

to calculate the potential outcome of the transition.
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If the transition is represented by a plant upset condition such as a

transient, then the upset will immediately impact attributes such as cost

and external attention, as dictated by analysis such as the deterministic

economic models discussed earlier.  More complicated upsets (transients

leading to long duration outages, loss-of-coolant-accidents, tube ruptures,

power interruptions) will have correspondingly higher disutility values for

the affected attributes.  Note that state transition probabilities following an

upset condition may be determined by using either Equation 46 or

Equation 48, as appropriate.

For those transitions that do not lead directly to a plant upset (for example,

a state of increased plant degradation), impacts to the PI attributes should

still be estimated.  For example, the decision maker may decide to repair

an inoperable component while staying at power.  While similar to the

plant upset utility calculations, the quantification of these impacts may be

of a more subtle nature and, consequently, may be more difficult to

estimate.  Further, since the impacts are, in some cases, indirect, the

uncertainty related to these situations may be larger than those for direct

plant upsets.

3. After a specified number of (simulation) iterations, the disutility for each

performance measure will be known for each iteration.  The expected PI may then

be estimated from the stored simulation history.

4. After obtaining the expected PI for the i'th decision, the process (steps 1 and 2)

are repeated for the i+1 decision alternative.  Upon completion of all the decision

alternatives, the uncertainty on each alternative outcome must be determined.

The uncertainty determination is accomplished by returning to steps 1 through 3,

but for each new uncertainty iteration, the parameters utilized in the simulation

are varied according to their individual probability distribution functions (i.e.,

their epistemic uncertainty).  For example, the transition rate of plant transients
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may be determined from operational data and could be gamma distributed.  For

the j'th (uncertainty) iteration, the simulation algorithm would pick a value from

the transient gamma distribution.  In general, all of the parameters utilized in the

simulation are uncertain, including state transition rates, component failure

probabilities, value tree weights, conditional disutility outcomes, repair times, and

cost information.

5. Using the decision rule for expected PI, we determine the preferential decision

alternative from the list of alternatives.

4.5 Explanation of the Decision Calculation

Now that all the individual analysis modules have been described, we will discuss the

details of the decision model calculation.  Specifically, we will walk through the

simulation routine that has been developed for the prototype advisory system.  For our

decision process simulation, we chose to utilize the lifetime event simulation approach

described in the previous section.

Prior to performing the actual analysis, the user, the knowledge base, or a combination of

both, will have specified applicable decision alternatives.  For an analysis, at least two

decision options (e.g., remain at power as-is, repair component at power, shutdown) must

be selected.  We repeat the calculation described in this section for each decision

alternative, making sure to include attributes of the decision that are uniqe.

Step 1 – Initialization

To begin the decision analysis calculation, we first initialize the required variables.  A

vector array is used to store all applicable variables, thereby simplifying the steps

required when performing either sensitivity or uncertainty calculations.  Initially, the time

variable is set to zero.  Also, the outcome for each cardinal-based performance measure is
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initially set to zero.  Each ordinal-based performance measure is set to the first interval

(i.e., no impact)

1,1,1,0,0 ==================== attentioncdaccidentsdosestco (52)

Recall that both cost and dose are continuous performance measures, while the other

performance measures represent discrete outcomes.

Step 2 – Loop through the user-defined time intervals

The current version of the prototype allows up to three time intervals for each decision.

An example of a time interval would be the period of time required to repair a

component.  Following the repair, the plant operation until the next schedule outage

would be considered to be the second time interval.

Step 2a – Simulation during the first time interval, worker impacts

First, we recall the current interval duration from the variable vector array.  This duration

is defined at Td.

Next, if the user has specified any worker-related activities such as the work level (in

hours) or the average dose level (during the work), then we determine the direct impact

on the workers via

DTdose labor ××××==== (53)

where Tlabor is the worker labor time (hr) and D is the average dose rate (Sv/hr) during the

activitity.

Labor costs are estimated by

laborlabor WTstco ××××==== (54)
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where Tlabor is the worker labor time (hr) and Wlabor is the worker labor average repair

cost, which has been noted to be 1,900 euro/hr.

Next, the worker safety must be simulated, using the lifetime event simulation technique.

First, we determine the state transition time:

tacc = ln(Unif ) / (-λacc) (55)

where tacc is the transition time; Unif is a uniform random number between 0 and 1; and

λacc is the worker incident rate of 1.6E-4/hr (see Table 19).   Now, we check to see if the

transition time is larger than the time actually worked.  If the transition time is larger,

then no incident is recorded (i.e., the worker safety variable is left as-is).  But, if the

transition time is less than the total time to be worked, then a worker incident will occur.

Further simulation determines the severity of the incident via the probabilities described

in Table 19.  For example, the probability of a minor injury, pminor, given an incident, is

2.57E-1.  Performing the simulation, we would check to see if:

Unif < pminor (56)

If the simulation indicates that a minor injury occurs, then the worker safety variable,

accidents, would be increased to the “minor injury” scale category (which has a value of

2).  Otherwise, the simulation continues to see if a major injury, fatality, or multiple

fatalities will occur.  Any of these types of worker accidents would increment the worker

safety variable to the respective scale category.

Step 2b – Simulation during the first time interval, initiating events

Now, we need to determine if an initiating event will cause a transition prior to the end of

the current interval.  To perform this calculation, the simulation loops through each of the

nine initiating event types (see Table 18).  The state transition time (for the i’th initiating

event) is:
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tIE = ln(Unif ) / (-λ i) (57)

where tIE is the transition time; Unif is a uniform random number between 0 and 1; and λ i

is the i’th initiating event frequency (note that the user specifies the plant state for each

time interval, which dictates the initiator frequencies).  Again, we check to see if the

transition time is larger than the current time interval.  If the transition time is larger, then

no initiating event will occur within this interval.  But, if the transition time is less than

the current time interval, then the i’th initiating event will occur.  Note that in the

simulation we assume that the incident will be fixed following an initiating event.

First, let us look at the case where the initiating event occurs.  Following an initiating

event, we determine the probability of experiencing a core damage, conditional upon the

initiating event.  Thus, the simulation will test:

Unif < P(core damage | i’th initiating event) (58)

If the random number is less than the CCDP, then we have a core damage event (for this

one iteration – note that there are typically several thousand iterations performed during

the simulation).  If we have a core damage event, then we must increment the

performance measure variables accordingly.  For example, the cost variable will be set to

the core damage cost indicated in Table 9, the core damage variable will be set to an

index of 2 (1 = no core damage, 2 = core damage), and the external attention will be set

to its highest index (a value of 6, indicating a lengthy shutdown).

If there is no core damage, then we still have an initiating event.  Thus, we need to

account for the impacts associated with the initiating event type.  For example, if the

initiator is a loss of heat sink, then the plant down time will be down approximately 30

days while the “special” costs will be approximately 2 million euro (see Table 17).  Thus,

the costs here would be found by:

specialproductionlosttimedownIE CCTstco ++++××××==== (59)
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where Tdowntime is the duration of plant downtime following the initiator, Clost production is

the cost per unit time due to plant downtime, and Cspecial is the special costs associated

with the initiating event.

Step 2c – Simulation during the first time interval, finishing the interval

If we do not have an initiating event, we still must consider decision-specific impacts

such as plant down times or reductions in power.  For example, if the decision being

evaluated is one where the plant is shut down for the entire duration of the time interval,

then the costs associated with that decision would be:

productionlosttimedowndecision CTstco ××××==== (60)

where Tdowntime is the duration of plant downtime and Clost production is the cost per unit time

due to plant downtime.

Step 3 – Simulation during the second and third time intervals

The calculations described in Step 2 are repeated for the next two time intervals.  Note

though that during the next time interval, the plant state may change.  For example, the

plant may have been shut down in the first interval and may be at power during the

second interval.  Thus, many variables such as the initiating event frequencies and the

CCDPs are automatically adjusted to account for the particular plant state.

Further, one should realize that the performance measure variables are accumulated

through each of the time periods.  By this we mean that the overall total cost after the

three time intervals is:

321 durationdurationdurationtotal stcostcostcostco ++++++++==== (61)

The dose, attention, core damage, and worker safety measures will also be accumulated

over the disjoint time periods.
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Step 4 – Determine the PI outcomes

Following the three time period calculations, we need to determine the PI outcome for

each of the five performance measures.  This calculation, for cost, is performed by:

stcototalstcostco stcouwPI )(××××==== (62)

where wcost is the cost performance measure weight and u( )cost is the disutility at a value

of costtotal (see Figure 31).

For the dose calculation, we would have:

dosetotaldosedose doseuwPI )(××××==== (63)

while the other performance measure would have similar expressions.

The total PI for the decision is then the summation of the individual PI values, or:

attentiondamagecoreaccidentsdosestcodecision PIPIPIPIPIPI ++++++++++++++++==== (64)

Step 5 – Determine the PI statistics

Since the simulation will be repeated several thousand times (or iterations), we will need

to calculate PI statistics such as the expected PI:

n
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PIE

n

i
i

decision

�
======== 1

][ (65)

where PIi is the PI from the i’th iteration and n is the number of iterations.  If we were

performing an uncertainty analysis, the individual variables stored in the vector array
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(described in Step 1) would be randomly modified via Monte Carlo sampling.

Consequently, the simulation process would have to be repeated for the desired number

of uncertainty analysis iterations.  Thus, the overall calculation time for simulation may

be significant, which is one of the typical drawbacks to this type of calculation.

4.6 Summary

We have now outlined the decision analysis for the incident management prototype.

Within this analysis framework, we described both the deterministic and aleatory models

required to assist in the calculation of preferential decision options.  In general, the

calculation of preference between decision alternatives focuses on the expected PI, or:
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Since we are dealing with disutilities [u(xi | yi)] for the prototype system, we seek to have

decision options with low E[PI].  But, as part of the expected value calculation, we need

to incorporate epistemic uncertainties [π(x|y)] into the analysis.  Thus, we denoted the

types of sources and magnitudes of uncertainties for the items such as economics,

judgement, plant operation, and the safety assessment.

During the analysis discussion, we noted that we rely on two types of models,

deterministic and aleatory.   Within the deterministic framework, we focused on the

models of plant operation and economics.  For plant operations, the initiating events were

used in two ways, first to determine the probability of getting to a decision-specific state

(say a transient) and then second to determine the outcome of that state.  Our decision

maker has specified the likely impacts that would be realized following any one of the

nine categories of initiating events (Table 17).  For the economics modeling, we utilized

the work done by Burke, Aldrich, and Rasmussen (1984) in their report on nuclear power
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plant costs.  For example, from this work we were able to determine hourly repair costs,

worker injury costs, and core damage costs.

The aleatory modeling focused mainly on plant operations and the safety assessment.

Within the context of plant operations, we have modeled plant upset conditions as leading

to impacts in the PI performance measures such as core damage, cost, and external

attention.  Further, we determined models for industrial accidents and radiological dose,

both of which affect workers.  For example, the industrial accident model utilized worker

accident rates collected for the U.S. Department of Energy CAIRS database.  This

database includes a variety of accident information spanning the years of 1995 to 2000.

We then went on to describe the need and approach to simulation-based calculations for

decision processes.  The outcome represented in the decision model must exhibit an

appropriate level of detail regarding potential outcomes following a decision.  For

example, if a plant experiences more than one transient due to a decision to remain at

power, the PI for the outcome must reflect the multiple outages.  If each outage following

a plant trip results in lost power generation, the cost impact could be quite large.  Further,

if a plant experiences multiple trips in a short period of time, other impacts like external

attention may be increased due to the sensitive nature of initiating events at nuclear

power plants.   We also compared static model calculations against simulation models,

and illustrated the areas where simulation proves superior.

The goal of the decision-process simulation is to determine potential outcomes, determine

their individual impacts, weight the impacts by their respective likelihood, and then

calculate an overall E[PI] for each decision alternative.  Then, the decision alternative

with the lowest E[PI] is considered to be the preferred option.  In order to implement the

event simulation, we provide the mathematics needed for both a “thinning event”

simulation and a “lifetime event” simulation.  Thinning event simulation questions the

state transition probability at each incremental time step.   Lifetime event simulation

questions the time duration expected in a particular state, and then proceeds from one

state to the next by knowing the current state duration.  In general, the lifetime event
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simulation approach is much more computationally efficient, especially for the case of

reliable components and systems.  Consequently, this is the method we implemented for

the simulation module.  Further, we described, step-by-step, the details of the calculation

involved in simulating a decision.

We have now combined the modeling techniques and analysis methods into a prototype

incident management system.  This system is described, and utilized, in the next section.

We used the prototype system to evaluate actual incidents that occurred at two of the

decision maker’s plants.  For this discussion, we will explain the context of the incident,

the modeling required when using the prototype, and the results that are derived from

Version 1 of the prototype†.

                                               
† The culmination of approximately 4,000 lines of PHP code has gone into Version 1 of the prototype.
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"Facts do not cease to exist because they are ignored." – Aldous Huxley

5 Application Examples for Incident Decision Making

Recall that it is the goal of the incident advisor prototype to facilitate selection of a

preferential decision alternative from available options and provide technical justification

for the basis of the decision.  In previous sections, we defined the salient features of the

decision model and presented methods of solving such models.  In this section, we

demonstrate the methodology, and the advisor prototype, through two case studies.  The

first case study deals with decisions concerning a degraded, but not failed, component,

namely a small leak in a steam generator tube.  The second case study investigates the

decision process for a failed component, a pressure transducer attached to the primary

coolant system.  We will provide an overview of each incident, denote the inputs to the

decision model, and then analyze the decision model to determine a preferential option.

In both cases we will demonstrate use of the prototypical decision advisor software

developed as part of this work.  But first, let us describe the prototype system.

5.1 Structure of the Decision Advisor Prototype

In order to bring together the decision modeling and analysis heuristics, we have

developed a decision advisor prototype.  The goal of the prototype is to assist nuclear

power plant personnel in their response to incidents through implementation of the

methods described in this report.  During the development, we focused on four parts:

1. A primary controlling module to collect incident information and subsequently

determine the decision model.

2. Preference models representing the decision maker’s beliefs (via a value tree and

associated disutilities).

3. Supporting analysis modules (for example, the PRA, economic models, worker

safety models).

4. An analysis module to solve the decision process.
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While these four modules make up the structure of the prototype, we have developed a

list of salient features.  These features of the prototype include:

Elicit the General Context of Incident.   The prototype should be able to address incidents

involving either degraded SSCs in addition to initiator-type situations.  Further, relevant

information such as the plant boundary conditions and other event specific attributes

driving the incident must be known.  Once the relevant initial information is supplied to

the prototype, it should then be able to guide the analysis, with the assistance of the user,

to the completed decision results.

Construction and Solution of the Primary Decision Model.  The prototype should help the

analyst construct the decision model that will be used to determine an incident strategy.

This function should include both the ability to construct new models “on-the-fly” and

the storage/search capacity to recall prior evaluation that may be similar. It is envisioned

that the primary decision model that will drive the analysis is an influence diagram.   The

attributes defined in the value tree will be present in the decision model, primarily via the

“outcome” node that represents the overall disutility.  Consequently, the prototype must

utilize the PRA model, an economics module, worker risk information, and estimation of

external attention in order to provide a solution for the incident in question.

Provide Modeling Information.  The prototype should be able to provide information

(either through a knowledge base or an algorithm) relevant to the decision making

process.  This information will include items such as overall model structure, decision

alternatives (e.g., continue operating, shutdown, repair at power), probabilistic influences

(e.g., chance nodes, uncertainties), and outcome information (e.g., economic impacts,

non-economic impacts, or disutility).  Since some of the analysis may be internal to the

prototype, it is important that the user be informed as much as possible as to the “inner

workings” of the analysis.
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Assist in the Quality Assurance of the Decision Model.  The prototype should assist in

checking the model and results of the decision process.  It is believed that many

automated checks could be implemented to prevent modeling errors.  For example, the

prototype could check to ensure that entered or calculated probabilities fall between 0 and

1.  Also, checks could be provided to canvas the outcomes such as economic costs to

make sure that they fall within feasible ranges.

Provide Results and Sensitivity Metrics.  The prototype should yield applicable results

(either textual or graphical) with minimal burden on the user.  This reporting capability

should be tailored to the individual requiring the analysis results.  Results should include

information such as “tornado diagrams” (i.e., graphical sensitivity reports) and the multi-

way sensitivity plots.  Also, information specific to the uncertainties on the calculated

decision results should be provided in order to give the user an understanding of the

quantitative aspects found in the results.  The prototype should be able to provide

information (beyond the normal results) that lends insights into the decision models and

the drivers behind the models.  Since it is desirable to abstract and automate as much of

the decision modeling as possible, the prototype could yield results that are not

immediately understood by the analysts.  Consequently, there is a real need to be able to

have the prototype communicate the “how” and “why” of any analysis.

We have taken these desired features and the knowledge of the four main modules of the

prototype to construct an information and analysis flow framework.  This general

framework of the prototype is shown in Figure 55, where a total of five stages are

represented.  Each stage embodies a unique portion of the overall process of determining

a preferential decision option from a list of alternatives.  We will discuss each tier in turn.
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Figure 55.  Framework tiers embodied in the decision advisor prototype.

Stage I of the prototype represents the initialization of the decision process.  The current

version (version 1) of the prototype uses a web-centric approach where the prototype runs

off an web server.†  During the initialization process, the user must first log into the

advisor system.  Then, the user is presented with initial information, namely the value

tree, performance measure weights, and associated disutilities.  This information is

available for review but can not be modified (in this version of the prototype) by the user.

An example of the graphical user interface for the prototype is shown in Figure 56.  Note

that the prototype is multi-lingual, where the language can be changed by selecting from

a list of available options.

                                               
† The programming language used to develop the prototype is PHP, version 4 (www.php.net).

STAGE I -- Problem InitializationSTAGE I -- Problem Initialization

STAGE II -- Determine Incident Facts and Boundary ConditionsSTAGE II -- Determine Incident Facts and Boundary Conditions
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STAGE III -- Map Incident Information into
Prototype

STAGE IV -- Construct Decision Model
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STAGE IV -- Construct Decision Model
Specific to Incident

STAGE V -- Analyze Model
and Provide Applicable Results

STAGE V -- Analyze Model
and Provide Applicable Results
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Figure 56.  Example of the user interface for the decision advisor prototype.

We have discussed the knowledge base that is embodied in the prototype.  Using this

knowledge base, the prototype queries the user for relevant information applicable to the
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incident.  In later stages, the prototype will adjust the decision model based upon the user

input; allow modifications to both models and associated data as the analysis is

constructed; solve the model; and then provide results.  But, in Stage II, the user must

provide incident-specific facts and related boundary conditions.  For example, types of

data that must be supplied by the user at this stage include:

- The incident name and description

- The type of incident (component or initiator related)

- The current reactor state

- The time until the next scheduled outage

- Impacts to plant operations through component degradations

Often times the user may not know directly how a component degradation affects plant

operations.  For example, in the case of our failed pressure transducer, the degradation

affects the likelihood of tripping the plant from full power.  Unfortunately, this

component is not modeled in the decision maker’s PRA.  When developing a PRA, the

analysts determine which, of the tens of thousands of components, to model and which to

leave out.  If a component is modeled, it is represented by one or more “basic events” in

the PRA.  For example, a diesel generator may be modeled by fails-to-run, fails-to-start,

and maintenance outage events.  If a diesel generator is degraded, the user may select this

component directly from the list that is provided in Stage II.  But, if a component is not

represented in the PRA, one may still determine its impact on the PRA by use of

“surrogate components.”

A surrogate component is needed only when a component is not in the PRA logic models.

Current nuclear power plants have, as a rough estimate, over 50,000 components.  But, a

modern PRA typically models between 1,000-4,000 basic events.  Consequently, the

number of components directly in the PRA is substantially less than that in the plant

itself.  Consequently, we also ask the user if degraded components potentially impact

either (a) initiating events or (b) plant safety systems.  If the user answers affirmative,

then the user must subsequently specify these impacts.
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Within Stage II, the user will provide a variety of facts and boundary conditions specific

to the incident.  Some of this information will cause the prototype to ask the user for

additional information (for example, if a component degradation impacts initiating

events, the user will be queried for this information) in later stages.

In Stage III, the details of the incident are entered into the analysis data stream.  A variety

of data that resides in the prototype knowledge base will be revealed as nominal or “base

case” values – the user may override this information within this stage.  In the case of a

failed pressure transducer, the component degradation is not in the normal PRA.  But,

this component impacts transient initiating events.  A transducer failure makes it more

likely to have an upset since any one of the three remaining transducers can cause a trip,

in other words the first failure is a “fails safe” type that changes the system from a 2-of-4

to a 1-of-3 system.

Once the user indicates that a failure can impact entities such as initiators, they will be

asked to note the value of the impact.  The data entry screen looks like that shown in

Figure 57.  The values that appear in this figure are default frequencies for the initiating

events listed previously in Table 18 for each of the major plant states.  To modify one of

these values (for example the primary transient category), the user clicks on the

applicable data entry.  This process of indicating impacts to the decision model is

continued through the nominal configuration and any potential decision alternatives.

The knowledge base contains a selection of potential decision alternatives, options like

continuing as-is, shutting the plant down to fix the problem, repairing the problem at

power, etc.  Incident conditions that are tied to a decision (through the knowledge base)

will cause that decision to automatically be used in the analysis.  An example of this case

is for a failure of the diesel generator, where it is tied to the option “repair at power”

since this component is a standby safety system that may be modified while the plant
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operates.  Conversely, an incident involving the accumulator† could not be repaired at

power since it is an integral part of the primary coolant system – thus it would not have

an association with that decision node in the knowledge base.  After the user denotes the

final list of potential decision alternatives, additional details for each option must be

provided.

Figure 57.  Example of the data entry interface of the decision advisor prototype for

impacts to initiating events.

                                               
†  The accumulator is a small vessel, partially filled with water, which helps to control the pressure inside

the reactor coolant loops.
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Version 1 of the prototype allows a total of three plant state changes following the

implementation of a decision.  Most decisions will require fewer than three states to

represent the decision outcome.  Examples of the states associated with decision

alternatives are (assuming the plant is originally in the full-power state A1):

- If the decision is to remain as-is, then plant will (nominally) remain in A1 until

the next planned outage.  The decision model for this alternative will then assume

the plant is in state A1 until it leaves this state due to a stochastic event such as a

transient.

- If the decision is to repair the component while the plant remains at power, the

decision model will use two states.  First, the plant will be in state A1, but only

for the time it takes to repair the component.  For this period, the prototype will

ask the user for the duration, plant degradation values (to either initiator or system

failure likelihood), and the worker hours needed to fix the inoperable component

(in order to determine the industrial safety impacts).  For the second time period,

the plant will stay in state A1, but the plant is repaired (if a successful repair) so

the plant status will return to the nominal, fully functional, state.

- If the decision is to shut the plant down to fix the problem, the decision model

will use two states.  First, the plant will go to a shutdown state (for example, state

A3, where the reactor is subcritical, but the plant is in a “hot shutdown”) for a

short duration.  The user must specify the actual state, plant impact while in this

state, and the duration of time in this state.  Following the repair, the plant will

return to the full-power state A1.

Once the relevant decision information is entered into the prototype, the user enters Stage

IV.  Here, the prototype will construct the decision model that will be analyzed to

determine the preferential decision option.  Prior to the actual analysis, the prototype

displays the information that has been collected by the user in order to offer a final check

of the decision model inputs.
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Stage IV of the prototype is where the decision model is constructed (internally) by the

prototype.  The current process that takes place within this stage is to quickly evaluate the

generic influence diagram that was discussed in Section 3.2 via a static, sequence-based

“roll-back” calculation (Clemen, 1996).  This numerical calculation is effectively the

same as that provided by the standard decision tree approach.  While this calculation may

not be as robust as that from simulation, it is nonetheless much faster.  The prototype

spends approximately three to five seconds solving the static model, including a low and

high sensitivity calculation for the major model variables.

Once the static results are shown on the screen, the user has officially entered Stage V of

the decision advisor prototype.  Stage V is the final step in the analysis process, whereby

the user is allowed to explore the analysis results and, if necessary, instruct the prototype

to evaluate the model using simulation.   At a minimum though, the user is shown the

decision alternative ranked by preference along with the numerical score (calculated via

Equation 5).  Also, the user is allowed to view sensitivity calculations and perform a

Monte Carlo uncertainty analysis.  Examples of these screens will be shown during the

case study discussion.

5.2 Case Study I – A Leaking Steam Generator Tube

5.2.1 An Overview of the Problem

In a pressurized water reactor (PWR) nuclear power plant, coolant leaves the reactor and

enters one of the steam generators.  In the steam generators, heat is transferred from the

primary coolant to the secondary.  A typical steam generator is of a “U-tube” type with

the primary fluid inside the U-tube and the secondary fluid flowing over the outside of

the tubes.  Of concern with this system is the potential for leaks or ruptures of the one or

more U-tubes.  Leaks of primary coolant to the secondary will cause an increase in the

secondary radioactivity.  Larger leaks or ruptures may cause a challenge to the ability to

cool the reactor and provides a direct path from the reactor to systems outside the reactor

containment structure.
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The incident modeled for Case Study I was that of a leaking steam generator tube.  At a

typical PWR, small leaks of the steam generator can be mitigated by operation of the

chemical and volume control system (CVCS).  Note that the definition of small leaks (in

this report) include incidents where the primary-to-secondary rate is less than 20 l/hr.

Thus, if a small steam generator leak occurs and the CVCS functions, the inventories in

the primary and secondary remain stable, but the secondary radioactivity level will

gradually increase.  Further, for small leaks, the reactor will not automatically trip, but if

desired, the operators may reduce power and manually trip the reactor.  If the leak rate

were above 20 l/hr the plant would have to proceed to a shutdown situation as described

by its technical specifications.

5.2.2 Key Inputs into the Decision Model

If the leak is small, the incident may last over weeks or even months.  Very small leaks

from the primary to secondary are a normal part of operating any nuclear power plant.

So, the decision-maker must evaluate, almost on a constant basis, the basis for future

operation given the current conditions.  One may want to look at this case study as

evaluating the same decisions each day until the problem (i.e., the leak) is repaired.  Or,

we may need to revisit the decision making any time additional information relevant to

the decision is known.

The PRA associated with the prototype has an initiating event of steam generator tube

ruptures.  But, these tube ruptures are much larger leaks than that represented by our

incident.  Unless the leaking tube suddenly ruptures, the incident is more like an

inoperable component that may cause a plant transient rather than a full-fledged tube

rupture.  Consequently, to model a leak in the steam generator tube rupture, we used the

prototype to adjust the secondary side transient frequency slightly upward by 10%.  This

adjustment value is an assumption based upon engineering judgement since we did not

have a reliability model that would translate tube leaks into transient upsets.
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Since small leaks from the steam generator tubes are not currently integrated into the

prototype knowledge base, we modeled Case Study I by indicating that the incident

“impacts initiating events.”  We also assumed that when the leak was found, the plant

was in a full-power mode, State A1, and the next schedule outage was 100 days into the

future.

5.2.3 Analysis of the Decision Model

For each incident, the prototype offers a list of possible decision alternatives.  But, since

small leaks from a steam generator are not explicitly modeled in the knowledge base, the

prototype will not offer incident-specific advice related to the potential alternatives.

Instead, we are allowed to select appropriate alternatives from the master list.  Doing this,

we picked the following decisions:

1. Continue running with the primary system as-is (with one pressure transducer

failed safe and three working).  Here we maintain plant as is and use normal

makeup (i.e., CVCS) to mitigate the leak.  The secondary will have an increase in

radioactivity due to the leak, which we can model by specifying an increased level

of radiation work level.

2. Reduce Power.  Here we are going to bring the plant to a lower power level (e.g.,

80-90%) in order to mitigate the leak rate.  But, the secondary coolant system will

continue to have an increase in radioactivity due to the leak.

3. Shut the plant down and perform the repair.  Here we must bring to plant to a cold

shutdown state in order to repair the leaking tube.  Repair could consist of

resleeving or plugging the suspect tube(s).  It was assumed that the leaking tube

could be plugged within 96 hours.
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5.2.4 Case Study I Results

The prototype analysis results screen is shown in Figure 58.  As can be seen, the

preferential decision is to continue operation of the plant as-is.  The calculated PI for this

alternative is about 60% lower than the next closest option.  Two of the major reasons

why the “continue as-is” option is, in this case, preferential are:  (1) secondary side

transients, if they occur, are relatively benign and have a low CCDP and (2) the increase

in the secondary side transient frequency was estimated to be fairly small (10%).

Figure 58.  Point estimate results screen from the decision advisor prototype for Case

Study I.
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The prototype has been programmed to perform sensitivity analyses on all of the relevant

variables that enter into the decision model.  For each variable, we recalculate the overall

expected PI for both a low and high value.  Then, we determine which variables have the

largest impact (from low to high expected PI).  Of these, the prototype plots the top 15

variables as a “tornado plot.”  This plot is shown for Case Study I in Figure 59.

Evaluating the tornado diagram, we can see that a couple secondary side parameters are

important to the analysis.  But, one should also notice that other upset conditions, for

example loss of power, might be more important.  This importance implies that events

like loss of power, while occurring less frequently than secondary transients, have a

larger impact (in decision space) than more benign events.

Figure 59.  Sensitivity results (via a tornado diagram) for Case Study I.
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The prototype has also been programmed to perform an uncertainty analyses on all of the

relevant variables that enter into the decision model.  For each variable, we recalculate

the overall expected PI, for all decisions, using their epistemic uncertainties.  Then, for

each uncertainty iteration, the prototype determines which decision is most preferred,

which one is second, which one is third, etc.  The positional preference order is then

tabulated over all the iterations to determine the fraction of time the i’th decision is

preferred over the other decisions.  These results are then plotted.  An example of the

uncertainty results is shown for Case Study I in  Figure 60.  In this figure, we see that the

preferred decision (continue operation) from the point estimate results is preferred in

approximately 80% of the iteration calculations.  The other two options are similar in that

they trade second and third place by about the same fraction.

 Figure 60.  Uncertainty results for Case Study I.
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5.3 Case Study II – A Failed Primary Coolant Loop Pressure Transducer

5.3.1 An Overview of the Problem

In a nuclear power plant, portions of the primary system are instrumented to provide

process signals such as pressure and temperature.  The instrumentation that provides

these signals is typically in harsh environments (e.g., high temperature and humidity) and

may be difficult to repair.  Since it is desirable to have reliable signal outputs, this

instrumentation is arranged so that multiple trains can provide a reading.  For example, a

temperature signal may be constructed such that three instruments provide a temperature

measurement at approximately the same location.

While a plant has redundancy built into the instrumentation equipment, failure of one of

these signal devices causes concern to the plant.  Not only is the reliability of that signal

degraded, but the plant is now susceptible to spurious signals since most instrumentation

is designed to fail-safe.  For example, if a pressure signal has four redundant trains, where

any two can initiate safety injection, failure of one train leaves the system in a “one-out-

of-three” arrangement.

The second case study represents the incident where the plant experiences an inoperable

pressure transducer in the primary coolant system.  If one additional transducer emits a

spurious signal, the plant will have a transient.

5.3.2 Key Inputs into the Decision Model

The knowledge base behind the prototype has been augmented with information specific

to the pressure transducers.  First, a reliability model, using fault tree minimal cut sets,

has been integrated into the “systems analysis” module.  This module will now allow us

to determine the likelihood of the plant tripping due to a spurious signal from the pressure

transducer system.  In other words, we are extending (slightly) the PRA, but this
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modification now becomes a permanent addition to the prototype.  Consequently, in the

future, if the decision maker has an incident involving a pressure transducer alone, or in

conjunction with other failed components, the knowledge base will provide a solution to

initiator frequency impacts.  The second addition to the knowledge base was the inclusion

of influences on nodes within the database.  Since a failed pressure transducers may be

repaired at power, a relationship was identified between all four transducers and the

“repair at power” decision node.  Alternatively, one could shut the plant down and fix the

problem, or since there exists three backup transducers, one could continue to operate the

plant as-is.  Thus, these additional influencing factors were incorporated into the

knowledge base.

Since the prototype knowledge base handles much of the analysis, all we need to do is

identify the failed pressure transducer from the list of modeled components.  Following

this identification, the prototype will identify three candidate decision alternatives (repair

at power, remain as-is, shutdown and repair), but we are allowed to add additional

alternatives as necessary.  For each alternative, the prototype indicates the states and

transition times that may be expected.  For example, remaining at power would

(nominally) only require one plant state (the current one) and the duration would be until

the time of the next schedule shut down (which was specified earlier).  Of course, the

user can override the default values.

The prototype also allows the inclusion of repair-caused plant upsets and the possibility

that a repair is performed incorrectly.  The default is that the decision model will utilize

these parameters, but the user may elect not to select these.  For this case study, we did

allow the prototype to factor in these potential impacts for the decision model.
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5.3.3 Analysis of the Decision Model

As discussed, the prototype offers the following possible alternatives when a pressure

transducer fails:

1. Continue running with the primary system as-is (with one pressure transducer

failed safe and three working).

2. Perform a temporary repair while at power (i.e., on-line repair)

3. Shut the plant down and perform the repair.

The first alternative is optimal if we only considered cost (and there are no other faults in

the other pressure transducers).  But, operating the plant with a degraded safety system

opens the potential for an inadvertent plant upset.  In this case, we would experience both

an economic loss due to the outage and could have negative attention from the public

and/or regulator.

The second alternative, perform an online repair, will restore the system to an as-good-as-

new status.  As part of this strategy, we may consider the likelihood that the repair will be

performed improperly.  If the repair were successful, we would only sustain the costs of

the repair and could run the plant without stopping.  But, there is a small probability that

the repair personnel will cause an inadvertent transient (while doing the repair on-line),

thereby shutting the plant down.  This human error would cause an economic loss, as

well as increase the potential for negative attention.

The third alternative would be to shut the plant down and repair the component. The

decision maker would avoid negative attention, but would face a guaranteed economic

impact due to the lost energy production.  Fortunately though, the decision advisor
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prototype allows us to consider tradeoffs between performance measures such as cost,

safety, and adverse attention.  It was assumed that repair would take 48 hours.

For this case study, we assumed that there were 100 days until the next schedule

shutdown.  The plant state at the time of the incident was full power, State A1.  We did

not add any decision alternatives to the list of three provided initially by the prototype.

Also, we allowed for the possibility of human error via a repair-caused trip and an

unsuccessful repair.

5.3.4 Case Study II Results

The prototype analysis results screen is shown in Figure 61.  As can be seen, the

preferential decision is to continue operation of the plant as-is.  The point estimate PI for

this alternative is slightly lower than the other two options.  But, three reasons why the

“continue as-is” option is, in this case, preferential are:

1. Primary side transients, if they occur, are relatively benign and have a fairly low

CCDP.

2. The downtime impact is small (see Table 13).

3. Pressure transducers are relatively reliable components, giving operational margin

when operating with only three available.
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Figure 61.  Initial results screen from the decision advisor prototype for Case Study II.

Again, a sensitivity plot was constructed for this case study, whereby we determine the

top 15 variables.  This plot is shown for Case Study II in Figure 62.
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Evaluating the tornado diagram, we can see that the primary side transient frequency is

not as important as other variables.  Since the pressure transducer system only partially

impacts the primary transient value, other parameters associated with larger impacts tend

to be more important.  For example, note that secondary side transients are more likely

than primary transients (see Table 18), even during the degraded state.  But, these two

transients have similar outcomes with regard to impacts on PI.  Thus, parameters such as

secondary transients would tend to dominate over primary transients since the tornado

diagram represents the decision to continue operation as-is.

Figure 62.  Sensitivity results (via a tornado diagram) for Case Study II.
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An example of the uncertainty results is shown for Case Study I in Figure 63.  In this

figure, we see that the decision to continue operation is preferred in almost 100% of the

iteration calculations.  While this “dominance” result may be surprising, it is the same as

the case described in Section 4.1.3.  Repairing the transducer at power generally falls

second (in the list of preferential decisions) while shutting the plant down is typically

third.

Figure 63.  Uncertainty results for Case Study II.
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“If all economists were laid end to end, they would not reach a conclusion."

– George Bernard Shaw

6 Conclusions

In this thesis, we have outlined the general framework behind formal decision making

relevant to an incident management advisory system in nuclear power plants.  Along the

way, we faced several issues, including the determination of disutility functions,

automation of the decision process, and the solution of time-dependent decision

processes.

We were able to illustrate the complexities of our disutility functions by utilizing multi-

dimensional consistency checks via fixed indifference levels.  These “sanity” checks

illustrated major shortcomings in the original framework that were ultimately rectified.

But, a surprising result from our analysis was the difficulties encountered when using

AHP for disutility determination.  AHP is a technique that has seen increasing application

in the field of decision analysis. But, we found several technical issues that limited its

usefulness for our application, including:

- A tendency to produce excessive “risk prone” disutility functions for decision

maker preferences.

- A flawed representation of extreme outcomes, specifically a poor fidelity in

preserving the certainty equivalent at the upper end of our disutilities.

- An extreme sensitivity with regard to modifications of scales and matrix values at

the lower end of the disutility curve.

- A limitation in transformations from AHP normalized weights to disutility values.
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We initially used AHP to determine a disutility for our performance measures, measures

that span several orders of magnitude.  The developer of AHP, Saaty, has noted that AHP

should only be used for “one order of magnitude” types of preference elicitation (Saaty,

1997).  Consequently, to expand the use of AHP, Saaty has recommended a “pivot”

approach whereby many smaller AHP regions are joined to construct one large AHP

region, thereby avoiding the “order of magnitude” issue (Saaty and Vargas, 2000).  But,

from our analysis, we determined that this approach is flawed due to the nature of the

AHP approach over-emphasizing the initial portion of the performance measure scale.

We showed that by adjusting a single initial region, one could come up with dramatically

different AHP-based disutility results.  Since the number and magnitude of the scales for

a disutility are arbitrary (for example, with a cardinal-based measure such as cost, one

could have many intervals), the use of AHP is not consistent or robust for these types of

applications.

For problems that involve (a) comparison outcomes that are within an order of magnitude

and (b) have outcomes that are not arbitrary, then AHP may be useful.  For example, in

the evaluation of our value tree, the outcomes were measures like cost, worker safety,

radiological dose, plant safety, and external attention.  When we use AHP to determine

the value tree weights, we are comparing one entity (the worth of cost) against another

entity (the worth of worker safety).  These value tree measures are within an order of

magnitude from one another (one is not 100 or 1,000 times more important than the other

in the context of incident management).  Further, they do not have arbitrary outcomes

(for example, on the cost measure, the focus is “cost” as an impact, not on any one

particular value for cost).  Consequently, we did use AHP to assist in the determination of

value tree weights.  But, AHP poised numerous challenges for the disutility

determination.

We surmounted the problems of AHP-derived disutilities by developing a unique

approach that we call “measurable equivalence.”  The measurable equivalence method

uses facts, rather than judgement, to adjust disutilities.  There are two guiding principles

of this method.  First, we ensure that the worst case for each performance measure has
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approximately the same level of “consequence.”  Second, where possible, the

performance measure indifference points are constrained by actual measurable equalities,

where a “measurable equality” is two performance measure outcomes that would be

equivalent (e.g., a radiological dose of 7 Sv represents a fatality).  This second principle

is used to bring real data into the decision process while simultaneously reducing the

subjectivity when utilizing preference information.  Combined with the measurable

equivalence approach, we utilized a cost disutility function based upon lottery

equivalence input from our decision makers.  The disutility functions embodied in the

incident management advisor prototype reflect the measurable equivalence approach.

Consistency checks that were preformed using these disutilities showed very good

agreement with our expected results.

A second primary challenge we faced during this work was the integration and

automation of the decision analysis theory and analysis heuristics, leading to a decision

advisor prototype tool.  In order to realize the successful implementation of this tool, we

had to first decide on a programmatic framework for the software development – the

result of this decision was to base the prototype on a web browser.  Developing software

for a browser causes some difficulties since a browser is stateless and HTML has a

limited set of on-screen controls.  But, the benefits of a familiar user interface, a robust

open source application language (PHP version 4), and the potential for Internet

collaboration amongst the research team outweighed the development complications.  We

were able to abstract the theory (Section 3) and methods (Section 4) in order to automate

the incident decision process.  Included in this process are:

- Decision maker preferences via the value tree (and corresponding weights) and

the measurable equivalence disutilities.

- PRA models through the use of initiator upsets and safety system responses.

- Economic, worker safety, and radiological dose deterministic modeling.
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- Decision alternatives related to incident management.

- Plant operational state determination.

- Sensitivity and uncertainty treatment.

Two major portions of the advisor prototype framework are the ideas of influenced-based

information storage (via a knowledge base) and enveloping the entire decision process in

a simulation representation.

In order to assist a user confronted with complex nuclear power plant decisions, we

forced the prototype to rely on an underlying knowledge base.  Rather than just having

tables of information (e.g., lists of component names and descriptions) like one might

find in a traditional database, we structured the database to allow us to capture decision-

specific influences.  For example, an auxiliary feedwater pump is a backup safety system

that, if it fails, can generally be repaired while the plant stays at power.  Thus, in our

knowledge base, we defined a relationship between the decision node “repair at power”

and the auxiliary feedwater pump.  The positive outcome of this encoding of knowledge

is that for any incident which involves a feedwater pump, the prototype will

automatically allow the “repair at power” decision to enter into the final decision analysis

model.  While this example may seem obvious to individuals operating a nuclear power

plant, this concept of influences between object nodes in the knowledge base allows us to

define complex relationships that may otherwise be missed.  The benefit of this

relationship idea was revealed to us early into our research when we compared two

decision models, one developed by us and one by our plant decision makers.  The

decision maker’s model did not include the potential of causing an plant upset during

repair (of a failed instrumentation module), even though the nuclear industry has seen

these types of events.  Consequently, by embedding operational information into the

knowledge base, we make the resulting decision model robust and lessen the cognitive

burden on the user.  Further, as time passes and additional information is entered into the
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knowledge base, the decision advisor system becomes a mechanism of capturing

operational history and institutional wisdom.

Since decision processes involve stochastic outcomes, we evaluated both traditional static

and dynamic models.  For treatment of the dynamic models, we utilized a version of the

Metropolis simulation algorithm, but we extended the routine to encompass decision

processes for nuclear power plants.  We then ran this simulation approach and compared

the results again analytic (exact) and approximate (static) model solutions.  Within our

decision framework, we are concerned with plant upsets – via initiating events – and the

reliability of safety systems.  We found that in some cases, static models will adequately

represent the decision model.  But, in other cases, static decision trees and fault trees

provide only a rough approximation to the exact answer.  Note though that static models

may be solved very quickly, while simulation-based approaches take much longer.

Consequently, we structured the decision advisor prototype such that a two-level analysis

approach is possible.  A static model can be used to provide decision advice immediately

while the prototype continues to process the simulation model.

A variety of secondary accomplishments were realized during the research behind this

report.  Our treatment of epistemic uncertainty was comprehensive and included portions

of the decision model such as preference functions and the value tree weights.  The

discussion of the potential modifications and limitations when using a PRA for decision

making points out areas of concern.  Since we do use a variety of PRA information as

part of the decision advisor prototype, we developed a XML schema specific to this

information in order to facilitate the transfer and manipulation of data structures found in

a typical nuclear power plant PSA.  We offer this format to the analysis community at

large with the hope that it will encourage the exchange of reliability and safety

information.

The decision advisor prototype that was constructed is considered to be Version 1 (the

full source code is shown in Appendix D).  The knowledge base that is behind the

prototype was built such that, over time, plant-specific information that impacts decision
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making can be added as a permanent part of the advisor.  Also, since the software uses a

modularized framework, extensions to the prototype can be made as the need arises.

This thesis provides the script for a decision making regimen, a play that casts process

models; applicable, informed decision makers; and formal decision-making technologies

together with the goal of assisting, not replacing, human judgment.  While decisions take

place on the stage of uncertainty, it is important to remember that decision science

provides a solid foundation for the framework described within this document.  But, like

any good story, our script has a beginning, middle, and (finally) an end.  Alas, as the

curtain falls, we have reached the end.
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